Maison développement back-end Tutoriel Python Comment lire un fichier CSV avec des pandas

Comment lire un fichier CSV avec des pandas

Dec 01, 2023 pm 04:18 PM
pandas csv文件

Les méthodes pour lire les fichiers CSV incluent l'utilisation de la fonction read_csv(), la spécification de délimiteurs, la spécification de noms de colonnes, le saut de lignes, la gestion des valeurs manquantes, les types de données personnalisés, etc. Introduction détaillée : 1. La fonction read_csv() est la méthode la plus couramment utilisée pour lire des fichiers CSV dans Pandas. Il peut charger des données CSV à partir du système de fichiers local ou d'une URL distante et renvoyer un objet DataFrame ; 2. Spécifiez le délimiteur par défaut, la fonction read_csv() utilisera des virgules comme délimiteur pour les fichiers CSV, etc.

Comment lire un fichier CSV avec des pandas

Le système d'exploitation de ce tutoriel : système Windows 10, Python version 3.11.4, ordinateur Dell G3.

Pandas est un puissant outil de traitement et d'analyse de données largement utilisé dans les domaines de la science des données et de l'apprentissage automatique. Il fournit de nombreuses méthodes puissantes mais faciles à utiliser pour lire et traiter différents types de fichiers de données. Parmi eux, la lecture et le traitement des fichiers CSV sont une fonction importante de Pandas.

Méthodes et techniques de lecture courantes

Tout d'abord, nous devons installer la bibliothèque Pandas. Pandas peut être installé en exécutant la commande suivante dans le terminal ou l'invite de commande à l'aide de la commande pip :

pip install pandas
Copier après la connexion

Une fois l'installation terminée, nous pouvons importer la bibliothèque Pandas dans le script Python et commencer à lire le fichier CSV.

import pandas as pd
Copier après la connexion

Pandas propose plusieurs méthodes pour lire les fichiers CSV. Voici quelques méthodes couramment utilisées.

1. Utilisez la fonction read_csv()

La fonction read_csv() est la méthode la plus couramment utilisée pour lire les fichiers CSV dans Pandas. Il peut charger des données CSV à partir du système de fichiers local ou d'une URL distante et renvoie un objet DataFrame.

df = pd.read_csv('data.csv')
Copier après la connexion

Le code ci-dessus lira les données du fichier data.csv dans le répertoire de travail actuel et les stockera dans un objet DataFrame nommé df. Si le fichier CSV se trouve dans un autre répertoire, le chemin complet du fichier peut être fourni.

2. Spécifiez le délimiteur

Par défaut, la fonction read_csv() utilisera la virgule comme délimiteur pour les fichiers CSV. Si le fichier CSV utilise d'autres délimiteurs, vous pouvez les spécifier via le paramètre sep.

df = pd.read_csv('data.csv', sep=';')
Copier après la connexion

Le code ci-dessus lira le fichier CSV en utilisant le point-virgule comme délimiteur.

3. Spécifiez les noms de colonnes

Si le fichier CSV n'a pas de noms de colonnes ou si les noms de colonnes ne répondent pas aux exigences, vous pouvez spécifier des noms de colonnes personnalisés via le paramètre noms.

df = pd.read_csv('data.csv', names=['column1', 'column2', 'column3'])
Copier après la connexion

Le code ci-dessus lira le fichier CSV en utilisant des noms de colonnes personnalisés.

4. Sauter des lignes

Parfois, la première ou les premières lignes du fichier CSV ne sont pas des informations pertinentes, et ces lignes peuvent être ignorées via le paramètre skiprows.

df = pd.read_csv('data.csv', skiprows=3)
Copier après la connexion

Le code ci-dessus ignorera les trois premières lignes du fichier CSV et lira les données suivantes.

5. Traitement des valeurs manquantes

Il peut y avoir des valeurs manquantes dans le fichier CSV Vous pouvez spécifier la représentation des valeurs manquantes via le paramètre na_values ​​​​.

df = pd.read_csv('data.csv', na_values=['NA', 'NaN'])
Copier après la connexion

Le code ci-dessus identifiera tous les « NA » et « NaN » comme valeurs manquantes.

6. Types de données personnalisés

Parfois, certaines colonnes du fichier CSV doivent être traitées avec des types de données spécifiques. Vous pouvez spécifier le type de données de chaque colonne via le paramètre dtype.

df = pd.read_csv('data.csv', dtype={'column1': int, 'column2': float})
Copier après la connexion

Le code ci-dessus définira le type de données de la colonne1 sur entier et le type de données de la colonne2 sur virgule flottante.

Voici quelques méthodes et techniques couramment utilisées pour lire des fichiers CSV avec Pandas. En appliquant ces méthodes de manière flexible, différents types de fichiers CSV peuvent être facilement lus et traités, et une analyse et un traitement ultérieurs des données peuvent être effectués.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Résoudre les problèmes courants d'installation de pandas : interprétation et solutions aux erreurs d'installation Résoudre les problèmes courants d'installation de pandas : interprétation et solutions aux erreurs d'installation Feb 19, 2024 am 09:19 AM

Tutoriel d'installation de Pandas : analyse des erreurs d'installation courantes et de leurs solutions, des exemples de code spécifiques sont requis Introduction : Pandas est un puissant outil d'analyse de données largement utilisé dans le nettoyage des données, le traitement des données et la visualisation des données, il est donc très respecté dans le domaine de la science des données. Cependant, en raison de problèmes de configuration de l'environnement et de dépendances, vous pouvez rencontrer des difficultés et des erreurs lors de l'installation de pandas. Cet article vous fournira un didacticiel d'installation de pandas et analysera certaines erreurs d'installation courantes et leurs solutions. 1. Installez les pandas

Méthode de fonctionnement détaillée pour comparer les fichiers CSV avec Beyond Compare Méthode de fonctionnement détaillée pour comparer les fichiers CSV avec Beyond Compare Apr 22, 2024 am 11:52 AM

Après avoir installé le logiciel BeyondCompare, sélectionnez le fichier CSV à comparer, cliquez avec le bouton droit sur le fichier et sélectionnez l'option [Comparer] dans le menu développé. La session de comparaison de texte sera ouverte par défaut. Vous pouvez cliquer sur la barre d'outils de la session de comparaison de texte pour afficher respectivement les boutons [Toutes [,] Différences [ et [Identique]] afin d'afficher les différences de fichiers de manière plus intuitive et plus précise. Méthode 2 : ouvrez BeyondCompare en mode de comparaison de tables, sélectionnez la session de comparaison de tables et ouvrez l'interface d'opération de session. Cliquez sur le bouton [Ouvrir le fichier] et sélectionnez le fichier CSV à comparer. Cliquez sur le bouton du signe d'inégalité [≠] dans la barre d'outils de l'interface d'opération de la session de comparaison de tableaux pour afficher les différences entre les fichiers.

Révéler la méthode efficace de déduplication des données dans Pandas : conseils pour supprimer rapidement les données en double Révéler la méthode efficace de déduplication des données dans Pandas : conseils pour supprimer rapidement les données en double Jan 24, 2024 am 08:12 AM

Le secret de la méthode de déduplication Pandas : un moyen rapide et efficace de dédupliquer les données, qui nécessite des exemples de code spécifiques. Dans le processus d'analyse et de traitement des données, une duplication des données est souvent rencontrée. Les données en double peuvent induire en erreur les résultats de l'analyse, la déduplication est donc une étape très importante. Pandas, une puissante bibliothèque de traitement de données, fournit une variété de méthodes pour réaliser la déduplication des données. Cet article présentera certaines méthodes de déduplication couramment utilisées et joindra des exemples de code spécifiques. Le cas le plus courant de déduplication basée sur une seule colonne dépend de la duplication ou non de la valeur d'une certaine colonne.

Que signifie l'instantané de la monnaie numérique ? Apprenez-en davantage sur l'instantané de la monnaie numérique dans un article Que signifie l'instantané de la monnaie numérique ? Apprenez-en davantage sur l'instantané de la monnaie numérique dans un article Mar 26, 2024 am 09:51 AM

Pour certains investisseurs novices qui viennent d'entrer dans le cercle des devises, ils rencontreront toujours un vocabulaire professionnel au cours du processus d'investissement. Ce vocabulaire professionnel est créé pour faciliter l'investissement des investisseurs, mais en même temps, ce vocabulaire peut aussi être relativement difficile à comprendre. . L’instantané de monnaie numérique que nous vous présentons aujourd’hui est un concept relativement professionnel dans le cercle monétaire. Comme nous le savons tous, le marché du Bitcoin évolue très rapidement, il est donc souvent nécessaire de prendre des instantanés pour comprendre les changements sur le marché et nos processus opérationnels. De nombreux investisseurs ne savent peut-être toujours pas ce que signifient les instantanés de monnaie numérique. Laissez maintenant l'éditeur vous présenter un article pour comprendre l'instantané de la monnaie numérique. Que signifie l’instantané de la monnaie numérique ? Un instantané de monnaie numérique est un moment sur une blockchain spécifiée (c'est-à-dire

Comment résoudre le problème des caractères tronqués lors de l'importation de données chinoises dans Oracle ? Comment résoudre le problème des caractères tronqués lors de l'importation de données chinoises dans Oracle ? Mar 10, 2024 am 09:54 AM

Titre : Méthodes et exemples de code pour résoudre le problème des caractères tronqués lors de l'importation de données chinoises dans Oracle. Lors de l'importation de données chinoises dans la base de données Oracle, des caractères tronqués apparaissent souvent en raison de paramètres de jeu de caractères incorrects dans la base de données ou de problèmes de conversion d'encodage lors de l'importation. processus. . Afin de résoudre ce problème, nous pouvons adopter certaines méthodes pour garantir que les données chinoises importées peuvent être affichées correctement. Voici quelques solutions et exemples de code spécifiques : 1. Vérifiez les paramètres du jeu de caractères de la base de données Dans la base de données Oracle, les paramètres du jeu de caractères sont

Comment exporter les données interrogées dans Navicat Comment exporter les données interrogées dans Navicat Apr 24, 2024 am 04:15 AM

Exporter les résultats de la requête dans Navicat : exécuter la requête. Cliquez avec le bouton droit sur les résultats de la requête et sélectionnez Exporter les données. Sélectionnez le format d'exportation selon vos besoins : CSV : le séparateur de champ est une virgule. Excel : inclut les en-têtes de tableau, au format Excel. Script SQL : contient les instructions SQL utilisées pour recréer les résultats de la requête. Sélectionnez les options d'exportation (telles que l'encodage, les sauts de ligne). Sélectionnez l'emplacement d'exportation et le nom du fichier. Cliquez sur "Exporter" pour lancer l'exportation.

Comment lire un fichier CSV en Python Comment lire un fichier CSV en Python Mar 28, 2024 am 10:34 AM

Méthode de lecture : 1. Créez un exemple de fichier python ; 2. Importez le module csv, puis utilisez la fonction open pour ouvrir le fichier CSV ; 3. Passez l'objet fichier à la fonction csv.reader, puis utilisez une boucle for pour parcourir et lire chaque ligne de données ; 4. , imprimez simplement chaque ligne de données.

Comment lire des fichiers CSV avec Pycharm Comment lire des fichiers CSV avec Pycharm Apr 03, 2024 pm 08:45 PM

Les étapes pour lire les fichiers CSV dans PyCharm sont les suivantes : Importez le module csv. Ouvrez le fichier CSV à l'aide de la fonction open(). Utilisez la fonction csv.reader() pour lire le contenu du fichier CSV. Parcourez chaque ligne et obtenez les données du champ sous forme de liste. Traitez les données dans le fichier CSV, comme l'impression ou un traitement ultérieur.

See all articles