MySQL下的RAND()优化案例分析_MySQL
众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。
首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:
[yejr@imysql]> show create table t_innodb_random\G *************************** 1. row *************************** Table: t_innodb_random Create Table: CREATE TABLE `t_innodb_random` ( `id` int(10) unsigned NOT NULL, `user` varchar(64) NOT NULL DEFAULT '', KEY `idx_id` (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1
往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。
[yejr@imysql]> select count(*) from t_innodb_random\G *************************** 1. row *************************** count(*): 393216
1、常量等值检索:
[yejr@imysql]> explain select id from t_innodb_random where id = 13412\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: ref possible_keys: idx_id key: idx_id key_len: 4 ref: const rows: 1 Extra: Using index
[yejr@imysql]> select id from t_innodb_random where id = 13412; 1 row in set (0.00 sec)
可以看到执行计划很不错,是常量等值查询,速度非常快。
2、使用RAND()函数乘以常量,求得随机数后检索:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index
[yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)\G Empty set (0.26 sec)
可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。
我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 2 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G Empty set (0.27 sec)
可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。
3、改造成普通子查询模式 ,这里有两次子查询
[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G Empty set (0.27 sec)
可以看到,执行计划也不好,执行耗时较慢。
4、改造成JOIN关联查询,不过最大值还是用常量表示
[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: <derived2> type: system possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 Extra: *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: ref possible_keys: idx_id key: idx_id key_len: 4 ref: const rows: 1 Extra: Using where; Using index *************************** 3. row *************************** id: 2 select_type: DERIVED table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: No tables used
[yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G Empty set (0.00 sec)
这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。
这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:
[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G *************************** 1. row *************************** id: 1301 1 row in set (0.00 sec)
可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。
小结:
从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。
5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:
[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using index; Using temporary; Using filesort
[yejr@imysql]> select id from t_innodb_random order by rand() limit 1000; 1000 rows in set (0.41 sec)
全索引扫描,生成排序临时表,太差太慢了。
6、把随机数放在子查询里看看:
[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G 1000 rows in set (0.04 sec)
嗯,提速了不少,这个看起来还不赖:)
7、仿照上面的方法,改成JOIN和随机数子查询关联
[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: <derived2> type: system possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 Extra: *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: range possible_keys: idx_id key: idx_id key_len: 4 ref: NULL rows: 196672 Extra: Using where; Using index *************************** 3. row *************************** id: 2 select_type: DERIVED table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: No tables used *************************** 4. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G 1000 rows in set (0.00 sec)
可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。
综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。
上面说了那么多的废话,最后简单说下,就是把下面这个SQL:
SELECT id FROM table ORDER BY RAND() LIMIT n;
改造成下面这个:
SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
如果想要达到完全随机,还可以改成下面这种写法:
SELECT id FROM table t1 JOIN (SELECT round(RAND() * (SELECT MAX(id) FROM table)) AS nid FROM table LIMIT n) t2 ON t1.id = t2.nid;
就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Compétences en matière de traitement de la structure des Big Data : Chunking : décomposez l'ensemble de données et traitez-le en morceaux pour réduire la consommation de mémoire. Générateur : générez des éléments de données un par un sans charger l'intégralité de l'ensemble de données, adapté à des ensembles de données illimités. Streaming : lisez des fichiers ou interrogez les résultats ligne par ligne, adapté aux fichiers volumineux ou aux données distantes. Stockage externe : pour les ensembles de données très volumineux, stockez les données dans une base de données ou NoSQL.

Les performances des requêtes MySQL peuvent être optimisées en créant des index qui réduisent le temps de recherche d'une complexité linéaire à une complexité logarithmique. Utilisez PreparedStatements pour empêcher l’injection SQL et améliorer les performances des requêtes. Limitez les résultats des requêtes et réduisez la quantité de données traitées par le serveur. Optimisez les requêtes de jointure, notamment en utilisant des types de jointure appropriés, en créant des index et en envisageant l'utilisation de sous-requêtes. Analyser les requêtes pour identifier les goulots d'étranglement ; utiliser la mise en cache pour réduire la charge de la base de données ; optimiser le code PHP afin de minimiser les frais généraux.

La sauvegarde et la restauration d'une base de données MySQL en PHP peuvent être réalisées en suivant ces étapes : Sauvegarder la base de données : Utilisez la commande mysqldump pour vider la base de données dans un fichier SQL. Restaurer la base de données : utilisez la commande mysql pour restaurer la base de données à partir de fichiers SQL.

Comment insérer des données dans une table MySQL ? Connectez-vous à la base de données : utilisez mysqli pour établir une connexion à la base de données. Préparez la requête SQL : Écrivez une instruction INSERT pour spécifier les colonnes et les valeurs à insérer. Exécuter la requête : utilisez la méthode query() pour exécuter la requête d'insertion en cas de succès, un message de confirmation sera généré.

L'un des changements majeurs introduits dans MySQL 8.4 (la dernière version LTS en 2024) est que le plugin « MySQL Native Password » n'est plus activé par défaut. De plus, MySQL 9.0 supprime complètement ce plugin. Ce changement affecte PHP et d'autres applications

Pour utiliser les procédures stockées MySQL en PHP : Utilisez PDO ou l'extension MySQLi pour vous connecter à une base de données MySQL. Préparez l'instruction pour appeler la procédure stockée. Exécutez la procédure stockée. Traitez le jeu de résultats (si la procédure stockée renvoie des résultats). Fermez la connexion à la base de données.

La création d'une table MySQL à l'aide de PHP nécessite les étapes suivantes : Connectez-vous à la base de données. Créez la base de données si elle n'existe pas. Sélectionnez une base de données. Créer un tableau. Exécutez la requête. Fermez la connexion.

La base de données Oracle et MySQL sont toutes deux des bases de données basées sur le modèle relationnel, mais Oracle est supérieur en termes de compatibilité, d'évolutivité, de types de données et de sécurité ; tandis que MySQL se concentre sur la vitesse et la flexibilité et est plus adapté aux ensembles de données de petite et moyenne taille. ① Oracle propose une large gamme de types de données, ② fournit des fonctionnalités de sécurité avancées, ③ convient aux applications de niveau entreprise ; ① MySQL prend en charge les types de données NoSQL, ② a moins de mesures de sécurité et ③ convient aux applications de petite et moyenne taille.
