简单分析MySQL中的primary key功能_MySQL
在5.1.46中优化器在对primary key的选择上做了一点改动:
Performance: While looking for the shortest index for a covering index scan, the optimizer did not consider the full row length for a clustered primary key, as in InnoDB. Secondary covering indexes will now be preferred, making full table scans less likely。
该版本中增加了find_shortest_key函数,该函数的作用可以认为是选择最小key length的
索引来满足我们的查询。
该函数是怎么工作的:
代码如下:
What find_shortest_key should do is the following. If the primary key is a covering index
and is clustered, like in MyISAM, then the behavior today should remain the same. If the
primary key is clustered, like in InnoDB, then it should not consider using the primary
key because then the storage engine will have to scan through much more data.
调用Primary_key_is_clustered(),当返回值为true,执行find_shortest_key:选择key length最小的覆盖索引(Secondary covering indexes),然后来满足查询。
首先在5.1.45中测试:
$mysql -V mysql Ver 14.14 Distrib 5.1.45, for unknown-linux-gnu (x86_64) using EditLine wrapper root@test 03:49:45>create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb; Query OK, 0 rows affected (0.16 sec) root@test 03:49:47>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 root@test 03:49:51> root@test 03:49:51>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0
创建索引ind_1:
root@test 03:49:53>alter table test add index ind_1(name,d); Query OK, 0 rows affected (0.09 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 03:50:08>explain select count(*) from test; +—-+————-+——-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | PRIMARY | 4 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
添加ind_2:
root@test 08:04:35>alter table test add index ind_2(d); Query OK, 0 rows affected (0.07 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 08:04:45>explain select count(*) from test; +—-+————-+——-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | PRIMARY | 4 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
上面的版本【5.1.45】中,可以看到优化器选择使用主键来完成扫描,并没有使用ind_1,ind_2来完成查询;
接下来是:5.1.48
$mysql -V mysql Ver 14.14 Distrib 5.1.48, for unknown-linux-gnu (x86_64) using EditLine wrapper root@test 03:13:15> create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb; Query OK, 0 rows affected (0.00 sec) root@test 03:48:04>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 root@test 03:48:05>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now()); Query OK, 5 rows affected (0.01 sec) Records: 5 Duplicates: 0 Warnings: 0
创建索引ind_1:
root@test 03:13:57>alter table test add index ind_1(name,d); Query OK, 0 rows affected (0.01 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 03:15:55>explain select count(*) from test; +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | ind_1 | 52 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ root@test 08:01:56>alter table test add index ind_2(d); Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 添加ind_2: root@test 08:02:09>explain select count(*) from test; +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | ind_2 | 9 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ 1 row in set (0.00 sec)
版本【5.1.48】中首先明智的选择ind_1来完成扫描,并没有考虑到使用主键(全索引扫描)来完成查询,随后添加ind_2,由于 ind_1的key长度是大于ind_2 key长度,所以mysql选择更优的ind_2来完成查询,可以看到mysql在选择方式上也在慢慢智能了。
观察性能:
5.1.48 root@test 08:49:32>set profiling =1; Query OK, 0 rows affected (0.00 sec) root@test 08:49:41>select count(*) from test; +———-+ | count(*) | +———-+ | 5242880 | +———-+ 1 row in set (1.18 sec) root@test 08:56:30>show profile cpu,block io for query 1; +——————————–+———-+———-+————+————–+—————+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +——————————–+———-+———-+————+————–+—————+ | starting | 0.000035 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000051 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000010 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 1.178452 | 1.177821 | 0.000000 | 0 | 0 | | end | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000040 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000086 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | +——————————–+———-+———-+————+————–+—————+
对比性能:
5.1.45 root@test 08:57:18>set profiling =1; Query OK, 0 rows affected (0.00 sec) root@test 08:57:21>select count(*) from test; +———-+ | count(*) | +———-+ | 5242880 | +———-+ 1 row in set (1.30 sec) root@test 08:57:27>show profile cpu,block io for query 1; +——————————–+———-+———-+————+————–+—————+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +——————————–+———-+———-+————+————–+—————+ | starting | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000041 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 1.294178 | 1.293803 | 0.000000 | 0 | 0 | | end | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000040 | 0.000000 | 0.001000 | 0 | 0 | | logging slow query | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000080 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | +——————————–+———-+———-+————+————–+—————+
从上面的profile中可以看到在Sending data上,差异还是比较明显的,mysql不需要扫描整个表的页块,而是扫描表中索引key最短的索引页块来完成查询,这样就减少了很多不必要的数据。
PS:innodb是事务引擎,所以在叶子节点中除了存储本行记录外,还会多记录一些关于事务的信息(DB_TRX_ID ,DB_ROLL_PTR 等),因此单行长度额外开销20个字节左右,最直观的方法是将myisam转为innodb,存储空间会明显上升。那么在主表为t(id,name,pk(id)),二级索引ind_name(name,id),这个时候很容易混淆,即使只有两个字段,第一索引还是比第二索引要大(可以通过innodb_table_monitor观察表的的内部结构)在查询所有id的时候,优化器还是会选择第二索引ind_name。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Vous pouvez ouvrir PHPMYADMIN via les étapes suivantes: 1. Connectez-vous au panneau de configuration du site Web; 2. Trouvez et cliquez sur l'icône PHPMYADMIN; 3. Entrez les informations d'identification MySQL; 4. Cliquez sur "Connexion".

MySQL est un système de gestion de la base de données relationnel open source, principalement utilisé pour stocker et récupérer les données rapidement et de manière fiable. Son principe de travail comprend les demandes des clients, la résolution de requête, l'exécution des requêtes et les résultats de retour. Des exemples d'utilisation comprennent la création de tables, l'insertion et la question des données et les fonctionnalités avancées telles que les opérations de jointure. Les erreurs communes impliquent la syntaxe SQL, les types de données et les autorisations, et les suggestions d'optimisation incluent l'utilisation d'index, les requêtes optimisées et la partition de tables.

Redis utilise une architecture filetée unique pour fournir des performances élevées, une simplicité et une cohérence. Il utilise le multiplexage d'E / S, les boucles d'événements, les E / S non bloquantes et la mémoire partagée pour améliorer la concurrence, mais avec des limites de limitations de concurrence, un point d'échec unique et inadapté aux charges de travail à forte intensité d'écriture.

MySQL est choisi pour ses performances, sa fiabilité, sa facilité d'utilisation et son soutien communautaire. 1.MySQL fournit des fonctions de stockage et de récupération de données efficaces, prenant en charge plusieurs types de données et opérations de requête avancées. 2. Adoptez l'architecture client-serveur et plusieurs moteurs de stockage pour prendre en charge l'optimisation des transactions et des requêtes. 3. Facile à utiliser, prend en charge une variété de systèmes d'exploitation et de langages de programmation. 4. Avoir un solide soutien communautaire et fournir des ressources et des solutions riches.

La position de MySQL dans les bases de données et la programmation est très importante. Il s'agit d'un système de gestion de base de données relationnel open source qui est largement utilisé dans divers scénarios d'application. 1) MySQL fournit des fonctions efficaces de stockage de données, d'organisation et de récupération, en prenant en charge les systèmes Web, mobiles et de niveau d'entreprise. 2) Il utilise une architecture client-serveur, prend en charge plusieurs moteurs de stockage et optimisation d'index. 3) Les usages de base incluent la création de tables et l'insertion de données, et les usages avancés impliquent des jointures multiples et des requêtes complexes. 4) Des questions fréquemment posées telles que les erreurs de syntaxe SQL et les problèmes de performances peuvent être déboguées via la commande Explication et le journal de requête lente. 5) Les méthodes d'optimisation des performances comprennent l'utilisation rationnelle des indices, la requête optimisée et l'utilisation des caches. Les meilleures pratiques incluent l'utilisation des transactions et des acteurs préparés

La surveillance efficace des bases de données Redis est essentielle pour maintenir des performances optimales, identifier les goulots d'étranglement potentiels et assurer la fiabilité globale du système. Le service Redis Exporter est un utilitaire puissant conçu pour surveiller les bases de données Redis à l'aide de Prometheus. Ce didacticiel vous guidera à travers la configuration et la configuration complètes du service Redis Exportateur, en vous garantissant de créer des solutions de surveillance de manière transparente. En étudiant ce tutoriel, vous réaliserez les paramètres de surveillance entièrement opérationnels

Les méthodes de visualisation des erreurs de base de données SQL sont: 1. Afficher directement les messages d'erreur; 2. Utilisez des erreurs d'affichage et des commandes d'avertissement Show; 3. Accédez au journal d'erreur; 4. Utiliser les codes d'erreur pour trouver la cause de l'erreur; 5. Vérifiez la connexion de la base de données et la syntaxe de requête; 6. Utilisez des outils de débogage.

Apache se connecte à une base de données nécessite les étapes suivantes: Installez le pilote de base de données. Configurez le fichier web.xml pour créer un pool de connexion. Créez une source de données JDBC et spécifiez les paramètres de connexion. Utilisez l'API JDBC pour accéder à la base de données à partir du code Java, y compris l'obtention de connexions, la création d'instructions, les paramètres de liaison, l'exécution de requêtes ou de mises à jour et de traitement des résultats.
