Table des matières
Améliorez la clarté du code avec les tuples nommés Python
Apprenez à créer, déstructurer et optimiser l'utilisation de la mémoire pour un code plus propre et plus lisible. Explorez des exemples concrets et les meilleures pratiques.
创建命名元组
从 Namedtuple 访问元素
不可变性
方法
解压缩 Namedtuple
使用“Namedtuple”的优点
Maison développement back-end Tutoriel Python Améliorez la clarté du code avec les tuples nommés Python

Améliorez la clarté du code avec les tuples nommés Python

Jan 02, 2024 am 10:35 AM
python

Le module de collections de Python a une fonctionnalité appelée « Namedtuple », un « Namedtuple » est un tuple avec des éléments nommés pour rendre le code plus expressif. Tout comme un dictionnaire en Python, un "Namedtuple" permet d'accéder aux éléments en utilisant les membres du tuple au lieu de l'index.

Améliorez la clarté du code avec les tuples nommés Python

Améliorez la clarté du code avec les tuples nommés Python

Apprenez à créer, déstructurer et optimiser l'utilisation de la mémoire pour un code plus propre et plus lisible. Explorez des exemples concrets et les meilleures pratiques.

Python 的集合模块有一个称为“Namedtuple”的功能,“Namedtuple”是一个带有命名元素的元组,使代码更具表现力。就像 Python 中的字典一样,“Namedtuple”允许我们使用元组的成员而不是索引来访问元素。

创建命名元组

要创建一个命名元组,我们必须使用集合模块中的函数“namedtuple”。

from collections import namedtuple

# Define a employee tuple that has fields id, name and location.
Employee = namedtuple ('Employee', 'id name location')

# Create instances of Employee
employee1 = Employee (id=10, name='John Doe', location='Atlanta')
employee2 = Employee (id=11, name='Mick', location='Dallas')
Copier après la connexion

从 Namedtuple 访问元素

“Namedtuple”为元素访问提供了双重机制。首先,可以通过属性名称访问元素,第二种机制使用传统的数字索引。

print(f"{employee1.name} - {employee1.location}") # John Doe - Atlanta
print(f"{employee2.name} - {employee2.location}") # Mick – Dallas
Copier après la connexion

也可以使用数字索引访问元素。

print(f"{employee1[1]} - {employee1[2]}") # John Doe - Atlanta
print(f"{employee2[1]} - {employee2[2]}") # Mick – Dallas
Copier après la connexion

不可变性

不可变性是“Namedtuples”的基本属性,继承自常规元组。这意味着一旦在创建过程中设置了字段的值,就无法修改。

try:
    employee1.name = 'David'
except AttributeError as e:
    print(f"AttributeError: {e}") # AttributeError: can't set attribute
Copier après la connexion

方法

“Namedtuple”不仅提供了一种干净且可读的方法来构建数据,而且还提供了一些有用的方法,这些方法增强了“Namedtuple”的功能。

a) _asdict():_asdict() 方法以字典形式返回命名元组,提供了一种将“Namedtuples”转换为与其他数据结构兼容的格式的便捷方法。

employee1._asdict() # {'id': 10, 'name': 'John Doe', 'location': 'Atlanta'}
Copier après la connexion

b) _replace():_replace() 方法创建“Namedtuple”的新实例,其中指定的字段替换为新值。这种方法对于在允许修改的同时保持不可变性至关重要。

employee1_modified = employee1._replace(location='DFW')
employee1_modified # Employee(id=10, name='John Doe', location='DFW')
Copier après la connexion

c) _make():_make(iterable) 方法从可迭代对象创建“namedtuple”的新实例。例如,我们可以使用 _make() 方法从列表中创建一个 Namedtuple。

employee_list = [21, 'Bob','Gallup']
Employee._make(employee_list) # Employee(id=21, name='Bob', location='Gallup')
Copier après la connexion

解压缩 Namedtuple

通过解包过程,Python 的“Namedtuples”使您能够在单个简洁的语句中将它们的值分配给各个变量。

id, name, location = employee1
print(f"id: {id}, name: {name}, location:{location}")
Copier après la connexion

将“Namedtuples”转换为不同的数据结构

您可以使用 list() 构造函数将命名元组转换为列表。下面是一个示例:

list(employee1) # [10, 'John Doe', 'Atlanta']
Copier après la connexion

您可以使用“_asdict()”方法将命名元组转换为字典,该方法返回一个 OrderedDict,您可以将其转换为常规字典。下面是一个示例:

dict(employee1._asdict()) # {'id': 10, 'name': 'John Doe', 'location': 'Atlanta'}
Copier après la connexion

使用“Namedtuple”的优点

可读性:“Namedtuples”通过为元素提供有意义的名称,使代码更具可读性,从而消除了基于索引的访问的需要。

变:与常规元组一样,“Namedtuples”是不可变的。一旦创建,其值就无法更改。

内存效率:“Namedtuples”具有内存效率,与等效类相比,占用的空间更少。请务必注意,使用 Namedtuples 获得的内存效率在涉及大量实例的方案或处理大型数据集时更为常见。

轻量级数据结构: 非常适合创建简单的类,而无需自定义方法。

数据存储: 便于存储结构化数据,尤其是在不需要完整类的情况下。

API 和数据库记录: 用于表示从数据库返回的记录或从 API 接收的数据。

Python 中的“Namedtuple”非常适合需要具有命名字段的简单、不可变数据结构的场景,例如

配置设置:使用“Namedtuple”表示带有命名字段的配置设置,以便清晰易用。

数据库记录:“Namedtuple”可以表示数据库记录,明确哪个字段对应于表中的哪一列。

命令行解析:使用“Namedtuple”存储解析的命令行参数,为输入参数提供清晰的结构。

命名常量:“Namedtuple”可用于表示代码中的命名常量,从而提供一种清晰易读的方式来定义常量值。

Les « Namedtuples » excellent dans ces scénarios en offrant clarté, lisibilité et immuabilité, ce qui en fait un outil précieux pour des données structurées de manière concise.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Comment est la prise en charge du GPU pour Pytorch sur Centos Comment est la prise en charge du GPU pour Pytorch sur Centos Apr 14, 2025 pm 06:48 PM

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Miniopen Centos Compatibilité Miniopen Centos Compatibilité Apr 14, 2025 pm 05:45 PM

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

Comment faire fonctionner la formation distribuée de Pytorch sur CentOS Comment faire fonctionner la formation distribuée de Pytorch sur CentOS Apr 14, 2025 pm 06:36 PM

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Comment choisir la version Pytorch sur Centos Comment choisir la version Pytorch sur Centos Apr 14, 2025 pm 06:51 PM

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

Comment installer nginx dans Centos Comment installer nginx dans Centos Apr 14, 2025 pm 08:06 PM

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

See all articles