


Analyse complète des fonctions de la bibliothèque numpy
numpy (Numerical Python) est une bibliothèque de calcul scientifique en Python, qui fournit des fonctions d'opération numérique efficaces. Dans la bibliothèque numpy, nous pouvons utiliser un grand nombre de fonctions. Cet article analysera en détail l'utilisation de certaines fonctions courantes dans la bibliothèque numpy et donnera des exemples de code correspondants.
1. Créer une fonction de tableau
- Fonction numpy.array
La fonction numpy.array est utilisée pour créer un objet tableau, qui peut être un tableau unidimensionnel, bidimensionnel ou multidimensionnel. Les paramètres peuvent être des listes, des tuples, des tableaux, etc.
Exemple de code :
import numpy as np # 创建一维数组 a = np.array([1, 2, 3, 4, 5]) print(a) # 创建二维数组 b = np.array([[1, 2, 3], [4, 5, 6]]) print(b) # 创建多维数组 c = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(c)
- fonction numpy.zeros
La fonction numpy.zeros est utilisée pour créer un tableau composé uniquement de 0, et la forme du tableau peut être spécifiée.
Exemple de code :
import numpy as np # 创建一个全为0的一维数组 a = np.zeros(5) print(a) # 创建一个全为0的二维数组 b = np.zeros((2, 3)) print(b)
- fonction numpy.ones
La fonction numpy.ones est utilisée pour créer un tableau de tous les uns, et la forme du tableau peut également être spécifiée.
Exemple de code :
import numpy as np # 创建一个全为1的一维数组 a = np.ones(5) print(a) # 创建一个全为1的二维数组 b = np.ones((2, 3)) print(b)
2. Fonction mathématique
- Fonction numpy.sin
La fonction numpy.sin est utilisée pour calculer la valeur sinusoïdale de chaque élément du tableau.
Exemple de code :
import numpy as np a = np.array([0, np.pi/2, np.pi]) b = np.sin(a) print(b)
- fonction numpy.cos
La fonction numpy.cos est utilisée pour calculer le cosinus de chaque élément d'un tableau.
Exemple de code :
import numpy as np a = np.array([0, np.pi/2, np.pi]) b = np.cos(a) print(b)
- fonction numpy.exp
La fonction numpy.exp est utilisée pour calculer la valeur exponentielle de chaque élément du tableau.
Exemple de code :
import numpy as np a = np.array([1, 2, 3]) b = np.exp(a) print(b)
3. Fonction statistique
- fonction numpy.mean
La fonction numpy.mean est utilisée pour calculer la moyenne de chaque élément du tableau.
Exemple de code :
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.mean(a) print(b)
- fonction numpy.max
La fonction numpy.max est utilisée pour calculer la valeur maximale dans un tableau.
Exemple de code :
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.max(a) print(b)
- fonction numpy.min La fonction
numpy.min est utilisée pour calculer la valeur minimale dans un tableau.
Exemple de code :
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.min(a) print(b)
4. Fonction d'opération de tableau
- Fonction numpy.reshape
La fonction numpy.reshape est utilisée pour modifier la forme du tableau et peut convertir le tableau en le nombre spécifié de lignes et de colonnes.
Exemple de code :
import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) b = np.reshape(a, (2, 3)) print(b)
- fonction numpy.transpose
la fonction numpy.transpose est utilisée pour transposer un tableau.
Exemple de code :
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) b = np.transpose(a) print(b)
Ce qui précède ne sont que quelques-unes des fonctions de la bibliothèque numpy. Il existe de nombreuses autres fonctions qui peuvent être utilisées pour les calculs de tableaux, les statistiques, les opérations, etc. J'espère que cet article pourra aider les lecteurs à mieux comprendre la liste des fonctions de la bibliothèque numpy.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE
