Maison développement back-end Tutoriel Python Analyse complète des fonctions de la bibliothèque numpy

Analyse complète des fonctions de la bibliothèque numpy

Jan 03, 2024 pm 02:23 PM
numpyndarray - La structure de données la plus importante dans numpy Représente un objet tableau à n dimensions. numpyarray - Fonctions pour créer des tableaux numpy.

Analyse complète des fonctions de la bibliothèque numpy

numpy (Numerical Python) est une bibliothèque de calcul scientifique en Python, qui fournit des fonctions d'opération numérique efficaces. Dans la bibliothèque numpy, nous pouvons utiliser un grand nombre de fonctions. Cet article analysera en détail l'utilisation de certaines fonctions courantes dans la bibliothèque numpy et donnera des exemples de code correspondants.

1. Créer une fonction de tableau

  1. Fonction numpy.array
    La fonction numpy.array est utilisée pour créer un objet tableau, qui peut être un tableau unidimensionnel, bidimensionnel ou multidimensionnel. Les paramètres peuvent être des listes, des tuples, des tableaux, etc.
    Exemple de code :
import numpy as np
# 创建一维数组
a = np.array([1, 2, 3, 4, 5])
print(a)

# 创建二维数组
b = np.array([[1, 2, 3], [4, 5, 6]])
print(b)

# 创建多维数组
c = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(c)
Copier après la connexion
  1. fonction numpy.zeros
    La fonction numpy.zeros est utilisée pour créer un tableau composé uniquement de 0, et la forme du tableau peut être spécifiée.
    Exemple de code :
import numpy as np
# 创建一个全为0的一维数组
a = np.zeros(5)
print(a)

# 创建一个全为0的二维数组
b = np.zeros((2, 3))
print(b)
Copier après la connexion
  1. fonction numpy.ones
    La fonction numpy.ones est utilisée pour créer un tableau de tous les uns, et la forme du tableau peut également être spécifiée.
    Exemple de code :
import numpy as np
# 创建一个全为1的一维数组
a = np.ones(5)
print(a)

# 创建一个全为1的二维数组
b = np.ones((2, 3))
print(b)
Copier après la connexion

2. Fonction mathématique

  1. Fonction numpy.sin
    La fonction numpy.sin est utilisée pour calculer la valeur sinusoïdale de chaque élément du tableau.
    Exemple de code :
import numpy as np
a = np.array([0, np.pi/2, np.pi])
b = np.sin(a)
print(b)
Copier après la connexion
  1. fonction numpy.cos
    La fonction numpy.cos est utilisée pour calculer le cosinus de chaque élément d'un tableau.
    Exemple de code :
import numpy as np
a = np.array([0, np.pi/2, np.pi])
b = np.cos(a)
print(b)
Copier après la connexion
  1. fonction numpy.exp
    La fonction numpy.exp est utilisée pour calculer la valeur exponentielle de chaque élément du tableau.
    Exemple de code :
import numpy as np
a = np.array([1, 2, 3])
b = np.exp(a)
print(b)
Copier après la connexion

3. Fonction statistique

  1. fonction numpy.mean
    La fonction numpy.mean est utilisée pour calculer la moyenne de chaque élément du tableau.
    Exemple de code :
import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.mean(a)
print(b)
Copier après la connexion
  1. fonction numpy.max
    La fonction numpy.max est utilisée pour calculer la valeur maximale dans un tableau.
    Exemple de code :
import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.max(a)
print(b)
Copier après la connexion
  1. fonction numpy.min La fonction
    numpy.min est utilisée pour calculer la valeur minimale dans un tableau.
    Exemple de code :
import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.min(a)
print(b)
Copier après la connexion

4. Fonction d'opération de tableau

  1. Fonction numpy.reshape
    La fonction numpy.reshape est utilisée pour modifier la forme du tableau et peut convertir le tableau en le nombre spécifié de lignes et de colonnes.
    Exemple de code :
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
b = np.reshape(a, (2, 3))
print(b)
Copier après la connexion
  1. fonction numpy.transpose
    la fonction numpy.transpose est utilisée pour transposer un tableau.
    Exemple de code :
import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.transpose(a)
print(b)
Copier après la connexion

Ce qui précède ne sont que quelques-unes des fonctions de la bibliothèque numpy. Il existe de nombreuses autres fonctions qui peuvent être utilisées pour les calculs de tableaux, les statistiques, les opérations, etc. J'espère que cet article pourra aider les lecteurs à mieux comprendre la liste des fonctions de la bibliothèque numpy.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte Mar 05, 2025 am 09:58 AM

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Comment utiliser la belle soupe pour analyser HTML? Comment utiliser la belle soupe pour analyser HTML? Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Filtrage d'image en python Filtrage d'image en python Mar 03, 2025 am 09:44 AM

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Comment travailler avec des documents PDF à l'aide de Python Comment travailler avec des documents PDF à l'aide de Python Mar 02, 2025 am 09:54 AM

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Comment se cacher en utilisant Redis dans les applications Django Comment se cacher en utilisant Redis dans les applications Django Mar 02, 2025 am 10:10 AM

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Introduction à la programmation parallèle et simultanée dans Python Introduction à la programmation parallèle et simultanée dans Python Mar 03, 2025 am 10:32 AM

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

Comment implémenter votre propre structure de données dans Python Comment implémenter votre propre structure de données dans Python Mar 03, 2025 am 09:28 AM

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE

See all articles