


Séoul, Corée du Sud, utilisera des drones et l'intelligence artificielle pour surveiller les conditions de circulation l'année prochaine
La municipalité de Séoul, en Corée du Sud, a récemment annoncé qu'elle commencerait à utiliser des drones pour surveiller les conditions de circulation en temps réel à partir de 2024
Selon un rapport du Korea Herald, la ville de Séoul prévoit d'utiliser des drones pour prendre des vidéos de la circulation à 200 mètres au-dessus du sol, puis d'utiliser des algorithmes d'intelligence artificielle pour analyser ces vidéos et prédire les futures conditions de circulation. Afin d'établir un système de gestion du trafic utilisant des drones et l'intelligence artificielle, le gouvernement métropolitain de Séoul a mené plusieurs tests en septembre et octobre
Selon certaines informations, IT House a appris que lors du Festival international de feux d'artifice de Séoul qui s'est tenu en octobre, des drones ont survolé Yeouido, dans l'ouest de Séoul, pour surveiller les foules et l'état des routes à proximité du lieu. De même, pendant Halloween, des drones ont également survolé Seongsu-dong dans l'est de Séoul et la région de Hongdae dans l'ouest de Séoul, principalement utilisés pour surveiller la densité des foules, la circulation et l'état des routes dans les zones sans caméras de surveillance
Le gouvernement de la ville de Séoul espère utiliser la combinaison des drones et de la technologie de l'intelligence artificielle pour identifier et répondre plus rapidement aux éventuels problèmes de gestion du trafic à l'avenir
Il est rapporté que les données de gestion du trafic signalées par les drones seront collectées cet automne par le Centre de gestion du trafic du gouvernement métropolitain de Séoul. À partir de l'année prochaine, ils partageront ces informations avec la police de Séoul et la Seoul Facilities Corporation pour une meilleure prise de décision et une meilleure gestion des situations de circulation
De plus, ces drones seront utilisés pour inspecter les chantiers de construction sur les routes. Les caméras du drone détermineront si les chantiers de construction enfreignent les règles de sécurité ou s'ils occupent trop d'espace routier afin que le drone puisse compléter le travail des inspecteurs
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Selon les informations publiées sur ce site Web le 22 août, China Aviation Engine Group Co., Ltd. a publié aujourd'hui à 6 h 28 une annonce officielle concernant le turbopropulseur de 900 kilowatts AEP100-A, développé de manière totalement indépendante par China Aviation Industry. Corporation, a propulsé le grand avion de transport sans pilote SA750U dans le Shaanxi. Premier vol réussi. Selon certaines informations, le turbopropulseur AEP100-A a été conçu par l'Institut chinois de recherche en ingénierie aérospatiale et fabriqué dans le Sud. Il a la capacité de s'adapter aux températures et aux plateaux élevés. Il utilise une conception aérodynamique tridimensionnelle et une technologie de conception d'unités pour fournir. puissance pour les avions tout en améliorant l’économie de carburant. Améliorer l’efficacité opérationnelle globale de l’avion. La série de turbopropulseurs AEP100 peut être équipée d'avions polyvalents de 2 à 6 tonnes ou de véhicules aériens sans pilote de 3 à 10 tonnes, et ses performances globales ont atteint le niveau avancé international du même niveau actuellement en service. Ce site a signalé plus tôt

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site du 22 août, selon le compte public officiel de "Shanhe Huayu", à 6h28 aujourd'hui, le gros avion de transport sans pilote SA750U développé indépendamment par Sunward Huayu Aviation Technology et complété par la coordination stratégique de Sunward Star Des compagnies aériennes ont décollé de Jingbian, Xi'an. Le centre d'essais expérimentaux de drones a effectué avec succès son premier vol. ▲ Source photo Compte public officiel "Shanhe Huayu", identique à celui ci-dessous. Selon les rapports, pendant le test en vol de 40 minutes, tous les équipements du système de l'avion ont fonctionné normalement et étaient en bon état. les performances étaient conformes aux spécifications de conception. Après avoir effectué les sujets de vol prévus. Ensuite, l'avion est revenu en douceur et le premier vol a été un succès complet. Le SA750U est le premier avion de transport sans pilote à grande échelle de Chine avec une charge de plus de 3 tonnes. Il n'a fallu que 2 ans et 8 mois à la société Shanhe Huayu pour terminer l'ensemble du processus, depuis la conception jusqu'au premier vol réussi du premier avion.
