Mongo db 与mysql 语法比较_MySQL
mongodb与mysql命令对比
传统的关系数据库一般由数据库(database)、表(table)、记录(record)三个层次概念组成,MongoDB是由数据库(database)、集合(collection)、文档对象(document)三个层次组成。MongoDB对于关系型数据库里的表,但是集合中没有列、行和关系概念,这体现了模式自由的特点。
MySQL | MongoDB | 说明 |
mysqld | mongod | 服务器守护进程 |
mysql | mongo | 客户端工具 |
mysqldump | mongodump | 逻辑备份工具 |
mysql | mongorestore | 逻辑恢复工具 |
db.repairDatabase() | 修复数据库 | |
mysqldump | mongoexport | 数据导出工具 |
source | mongoimport | 数据导入工具 |
grant * privileges on *.* to … |
Db.addUser() Db.auth() | 新建用户并权限 |
show databases | show dbs | 显示库列表 |
Show tables | Show collections | 显示表列表 |
Show slave status | Rs.status | 查询主从状态 |
Create table users(a int, b int) |
db.createCollection("mycoll", {capped:true, size:100000}) 另:可隐式创建表。 | 创建表 |
Create INDEX idxname ON users(name) | db.users.ensureIndex({name:1}) | 创建索引 |
Create INDEX idxname ON users(name,ts DESC) | db.users.ensureIndex({name:1,ts:-1}) | 创建索引 |
Insert into users values(1, 1) | db.users.insert({a:1, b:1}) | 插入记录 |
Select a, b from users | db.users.find({},{a:1, b:1}) | 查询表 |
Select * from users | db.users.find() | 查询表 |
Select * from users where age=33 | db.users.find({age:33}) | 条件查询 |
Select a, b from users where age=33 | db.users.find({age:33},{a:1, b:1}) | 条件查询 |
select * from users where age | db.users.find({'age':{$lt:33}}) | 条件查询 |
select * from users where age>33 and age | db.users.find({'age':{$gt:33,$lte:40}}) | 条件查询 |
select * from users where a=1 and b='q' | db.users.find({a:1,b:'q'}) | 条件查询 |
select * from users where a=1 or b=2 | db.users.find( { $or : [ { a : 1 } , { b : 2 } ] } ) | 条件查询 |
select * from users limit 1 | db.users.findOne() | 条件查询 |
select * from users where name like "%Joe%" | db.users.find({name:/Joe |

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

La numérisation complète de la table peut être plus rapide dans MySQL que l'utilisation d'index. Les cas spécifiques comprennent: 1) le volume de données est petit; 2) Lorsque la requête renvoie une grande quantité de données; 3) Lorsque la colonne d'index n'est pas très sélective; 4) Lorsque la requête complexe. En analysant les plans de requête, en optimisant les index, en évitant le sur-index et en maintenant régulièrement des tables, vous pouvez faire les meilleurs choix dans les applications pratiques.

Oui, MySQL peut être installé sur Windows 7, et bien que Microsoft ait cessé de prendre en charge Windows 7, MySQL est toujours compatible avec lui. Cependant, les points suivants doivent être notés lors du processus d'installation: téléchargez le programme d'installation MySQL pour Windows. Sélectionnez la version appropriée de MySQL (communauté ou entreprise). Sélectionnez le répertoire d'installation et le jeu de caractères appropriés pendant le processus d'installation. Définissez le mot de passe de l'utilisateur racine et gardez-le correctement. Connectez-vous à la base de données pour les tests. Notez les problèmes de compatibilité et de sécurité sur Windows 7, et il est recommandé de passer à un système d'exploitation pris en charge.

Les capacités de recherche en texte intégral d'InNODB sont très puissantes, ce qui peut considérablement améliorer l'efficacité de la requête de la base de données et la capacité de traiter de grandes quantités de données de texte. 1) INNODB implémente la recherche de texte intégral via l'indexation inversée, prenant en charge les requêtes de recherche de base et avancées. 2) Utilisez la correspondance et contre les mots clés pour rechercher, prendre en charge le mode booléen et la recherche de phrases. 3) Les méthodes d'optimisation incluent l'utilisation de la technologie de segmentation des mots, la reconstruction périodique des index et l'ajustement de la taille du cache pour améliorer les performances et la précision.

La différence entre l'index cluster et l'index non cluster est: 1. Index en cluster stocke les lignes de données dans la structure d'index, ce qui convient à la requête par clé et plage primaire. 2. L'index non clumpant stocke les valeurs de clé d'index et les pointeurs vers les lignes de données, et convient aux requêtes de colonne de clés non primaires.

MySQL est un système de gestion de base de données relationnel open source. 1) Créez une base de données et des tables: utilisez les commandes CreateDatabase et CreateTable. 2) Opérations de base: insérer, mettre à jour, supprimer et sélectionner. 3) Opérations avancées: jointure, sous-requête et traitement des transactions. 4) Compétences de débogage: vérifiez la syntaxe, le type de données et les autorisations. 5) Suggestions d'optimisation: utilisez des index, évitez de sélectionner * et utilisez les transactions.

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

MySQL prend en charge quatre types d'index: B-Tree, hachage, texte intégral et spatial. 1. L'indice de tree B est adapté à la recherche de valeur égale, à la requête de plage et au tri. 2. L'indice de hachage convient aux recherches de valeur égale, mais ne prend pas en charge la requête et le tri des plages. 3. L'index de texte complet est utilisé pour la recherche en texte intégral et convient pour le traitement de grandes quantités de données de texte. 4. L'indice spatial est utilisé pour la requête de données géospatiaux et convient aux applications SIG.

MySQL et MARIADB peuvent coexister, mais doivent être configurés avec prudence. La clé consiste à allouer différents numéros de port et répertoires de données à chaque base de données et ajuster les paramètres tels que l'allocation de mémoire et la taille du cache. La mise en commun de la connexion, la configuration des applications et les différences de version doivent également être prises en compte et doivent être soigneusement testées et planifiées pour éviter les pièges. L'exécution de deux bases de données simultanément peut entraîner des problèmes de performances dans les situations où les ressources sont limitées.
