


Corrélation entre la fonction de perte et la fonction de probabilité
La fonction de perte et la fonction de vraisemblance sont deux concepts importants dans l'apprentissage automatique. La fonction de perte est utilisée pour évaluer la différence entre les prédictions du modèle et les résultats réels, tandis que la fonction de vraisemblance est utilisée pour décrire la vraisemblance de l'estimation du paramètre. Ils sont étroitement liés car la fonction de perte peut être considérée comme la valeur négative de la fonction log-vraisemblance. Cela signifie que minimiser la fonction de perte équivaut à maximiser la fonction de vraisemblance, améliorant ainsi la précision de l'estimation des paramètres. En optimisant la fonction de perte, nous sommes en mesure d'ajuster les paramètres du modèle pour mieux ajuster les données et améliorer la précision des prédictions. Par conséquent, dans l’apprentissage automatique, la compréhension et l’application des fonctions de perte et des fonctions de vraisemblance sont très importantes.
Tout d’abord, comprenons le concept de fonction de perte. La fonction de perte est une fonction scalaire qui mesure la différence entre le résultat prévu ŷ du modèle et le résultat réel y. Dans l'apprentissage automatique, les fonctions de perte couramment utilisées incluent la fonction de perte carrée et la fonction de perte d'entropie croisée. La fonction de perte au carré peut être définie de la manière suivante :
L(ŷ,y)=(ŷ-y)²
La fonction de perte au carré est utilisée pour mesurer l'erreur quadratique entre les résultats de prédiction du modèle et le vrai résultat, plus l'erreur est grande. Plus elle est petite, meilleures sont les performances du modèle.
Ci-dessous, nous explorerons plus en détail le concept de fonction de vraisemblance. La fonction de vraisemblance est une fonction concernant le paramètre θ, qui décrit la probabilité que les données observées se produisent compte tenu du paramètre θ. En statistiques, nous utilisons souvent l'estimation du maximum de vraisemblance (MLE) pour estimer les paramètres θ. L'idée de l'estimation du maximum de vraisemblance est de sélectionner le paramètre θ qui maximise la fonction de vraisemblance. En maximisant la fonction de vraisemblance, nous pouvons trouver les valeurs de paramètres les plus probables compte tenu des données et ainsi estimer les paramètres.
En prenant la distribution binomiale comme exemple, en supposant que la probabilité d'observer k succès dans n essais est p, alors la fonction de vraisemblance peut être exprimée comme suit :
L(p)=(n choisissez k)* p ^k*(1-p)^(n-k)
où (n choisissez k) représente le nombre de combinaisons réussies de k essais sélectionnés parmi n essais. L’objectif de l’estimation du maximum de vraisemblance est de trouver une valeur p optimale qui maximise la probabilité des données observées sous cette valeur p.
Regardons maintenant la relation entre la fonction de perte et la fonction de vraisemblance. Dans l'estimation du maximum de vraisemblance, nous devons trouver un ensemble de paramètres θ tels que la fonction de vraisemblance des données observées soit maximisée sous ce paramètre. Par conséquent, nous pouvons considérer la fonction de vraisemblance comme une cible d'optimisation, et la fonction de perte est la fonction utilisée pour optimiser pendant le processus de calcul réel.
Ensuite, regardons un exemple simple pour illustrer la relation entre la fonction de perte et la fonction de vraisemblance. Supposons que nous ayons un ensemble de données {(x1,y1),(x2,y2),…,(xn,yn)}, où xi est la caractéristique d'entrée et yi est l'étiquette de sortie. Nous espérons utiliser un modèle linéaire pour ajuster ces données. La forme du modèle est la suivante :
ŷ=θ0+θ1x1+θ2x2+…+θmxm
où, θ0, θ1, θ2,…, θm sont les paramètres du modèle. Nous pouvons résoudre ces paramètres en utilisant les moindres carrés ou l’estimation du maximum de vraisemblance. L'objectif est de trouver un ensemble de paramètres θ qui minimisent la somme des carrés des pertes de toutes les données. Il peut être résolu par des méthodes telles que la descente de gradient.
Dans l'estimation du maximum de vraisemblance, nous pouvons utiliser la fonction de vraisemblance pour décrire la possibilité de données observées sous le paramètre θ, c'est-à-dire :
L(θ)=Πi=1^n P(yi|xi ;θ )
où, P(yi|xi;θ) est la fonction de densité de probabilité de l'étiquette de sortie yi sous le paramètre θ et compte tenu de la caractéristique d'entrée xi. Notre objectif est de trouver un ensemble de paramètres θ qui maximise la fonction de vraisemblance. Il peut être résolu en utilisant des méthodes telles que la montée en pente.
Maintenant, nous pouvons constater que la relation entre la fonction de perte et la fonction de vraisemblance est très étroite. Dans les moindres carrés, la fonction de perte au carré peut être considérée comme le négatif de la fonction log-vraisemblance. Dans l'estimation du maximum de vraisemblance, nous pouvons considérer la fonction de vraisemblance comme l'objectif d'optimisation, et la fonction de perte est la fonction utilisée pour l'optimisation pendant le processus de calcul réel.
En bref, la fonction de perte et la fonction de vraisemblance sont des concepts très importants dans l'apprentissage automatique et les statistiques. La relation entre eux est étroite et la fonction de perte peut être considérée comme l’opposé de la fonction log-vraisemblance. Dans les applications pratiques, nous pouvons choisir des fonctions de perte et des fonctions de vraisemblance appropriées pour optimiser le modèle en fonction de problèmes spécifiques.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.
