Table des matières
Comment l'algorithme de transformation de caractéristiques invariant à l'échelle détecte-t-il les points clés dans les images ?
Maison Périphériques technologiques IA Algorithme SIFT (Scale Invariant Features)

Algorithme SIFT (Scale Invariant Features)

Jan 22, 2024 pm 05:09 PM
计算机视觉 图像处理 特征工程 Notion d'algorithme

Algorithme SIFT (Scale Invariant Features)

L'algorithme SIFT (Scale Invariant Feature Transform) est un algorithme d'extraction de caractéristiques utilisé dans les domaines du traitement d'images et de la vision par ordinateur. Cet algorithme a été proposé en 1999 pour améliorer les performances de reconnaissance et de correspondance d'objets dans les systèmes de vision par ordinateur. L'algorithme SIFT est robuste et précis et est largement utilisé dans la reconnaissance d'images, la reconstruction tridimensionnelle, la détection de cibles, le suivi vidéo et d'autres domaines. Il obtient l'invariance d'échelle en détectant les points clés dans plusieurs espaces d'échelle et en extrayant des descripteurs de caractéristiques locales autour des points clés. Les principales étapes de l'algorithme SIFT comprennent la construction d'un espace d'échelle, la détection des points clés, le positionnement des points clés, l'attribution de directions et la génération de descripteurs de caractéristiques. Grâce à ces étapes, l’algorithme SIFT peut extraire des fonctionnalités robustes et uniques pour obtenir une reconnaissance et une correspondance efficaces des images.

L'algorithme SIFT a la principale caractéristique d'être invariant aux changements d'échelle, de rotation et de luminosité de l'image, et peut extraire des points caractéristiques uniques et stables pour obtenir une correspondance et une reconnaissance efficaces. Ses principales étapes comprennent la détection des valeurs extrêmes de l'espace d'échelle, le positionnement des points clés, l'attribution de direction, la description et la correspondance des points clés, etc. Grâce à la détection des valeurs extrêmes de l'espace d'échelle, l'algorithme SIFT peut détecter des points extrêmes dans des images à différentes échelles. Au cours de l'étape de positionnement des points clés, les points clés présentant une stabilité et un caractère unique sont déterminés grâce à la détection des valeurs extrêmes locales et à l'élimination des réponses de bord. L'étape d'attribution de direction attribue la direction dominante à chaque point clé pour améliorer l'invariance de rotation de la description des caractéristiques. L'étape de description des points clés utilise les informations de dégradé d'image autour des points clés pour générer des caractéristiques

1. Détection des valeurs extrêmes de l'espace d'échelle

Effectuez un traitement spatial d'échelle sur l'image d'origine via la fonction de différence gaussienne afin de détecter les valeurs extrêmes valeurs avec différentes échelles point. Ensuite, l'opérateur DoG est utilisé pour détecter ces points extrêmes, c'est-à-dire que la différence entre deux couches adjacentes d'images gaussiennes dans des pyramides gaussiennes d'échelles et de positions spatiales différentes est comparée pour obtenir des points clés invariants d'échelle.

2. Positionnement des points clés

Ensuite, l'algorithme SIFT attribue des directions à chaque point clé pour assurer l'invariance à la transformation de rotation. L'allocation de direction utilise la méthode statistique de l'histogramme de gradient pour calculer la valeur du gradient et la direction des pixels autour de chaque point clé, puis distribuer ces valeurs à l'histogramme de gradient, et enfin sélectionner le plus grand pic de l'histogramme comme point principal de la direction du point clé.

3. Allocation de direction

Après le positionnement des points clés et l'attribution de la direction, l'algorithme SIFT utilise le descripteur de caractéristiques du bloc d'image local pour décrire les caractéristiques régionales de chaque point clé. Le descripteur est construit sur la base de pixels autour de points clés pour garantir l'invariance aux changements de rotation, d'échelle et de luminosité. Plus précisément, l'algorithme SIFT divise les blocs d'image autour du point clé en plusieurs sous-régions, puis calcule l'ampleur et la direction du gradient des pixels dans chaque sous-région et construit un vecteur de caractéristiques à 128 dimensions pour décrire les caractéristiques locales de l'image. point clé. .

4. Description et correspondance des points clés

Enfin, l'algorithme SIFT effectue une correspondance d'image en comparant les vecteurs de caractéristiques des points clés dans les deux images. Plus précisément, l'algorithme évalue la similarité entre deux vecteurs de caractéristiques en calculant leur distance euclidienne ou leur similarité cosinusoïdale, obtenant ainsi une correspondance de caractéristiques et une reconnaissance de cible.

Comment l'algorithme de transformation de caractéristiques invariant à l'échelle détecte-t-il les points clés dans les images ?

L'algorithme SIFT effectue un traitement spatial d'échelle sur l'image originale via la fonction de différence gaussienne pour détecter les points extrêmes avec différentes échelles. Plus précisément, l'algorithme SIFT réalise la transformation d'échelle de l'image en construisant une pyramide gaussienne, c'est-à-dire en convoluant et en sous-échantillonnant continuellement l'image originale pour obtenir une série d'images gaussiennes à différentes échelles. Ensuite, des points clés invariants d'échelle sont obtenus en effectuant une opération de différence, à savoir l'opérateur DoG, sur deux couches adjacentes d'images gaussiennes.

Avant d'effectuer l'opération d'opérateur DoG, il est nécessaire de déterminer le nombre de couches de la pyramide gaussienne et l'échelle de chaque couche de l'image. L'algorithme SIFT divise généralement la pyramide gaussienne en plusieurs couches, et la taille de l'image de chaque couche est la moitié de celle de la couche précédente. Cela garantit que le changement d'échelle de l'image n'affectera pas la détection des points clés. Pour chaque couche d'image, l'algorithme SIFT sélectionne également plusieurs échelles afin de détecter les points clés à différentes échelles.

Après avoir déterminé le nombre de couches de la pyramide de Gauss et l'échelle de chaque couche de l'image, l'algorithme SIFT recherchera les points extrêmes sur chaque couche d'image, c'est-à-dire les 26 pixels autour de chaque pixel de la pyramide de Gauss. dans cette couche Parmi les points, recherchez la valeur maximale ou minimale et comparez-la avec les points de pixels correspondants dans les deux niveaux adjacents de la pyramide gaussienne pour déterminer si le point est un point extrême dans l'espace d'échelle. Cela permet la détection de points clés avec stabilité et unicité dans des images de différentes échelles. Il convient de noter que l'algorithme SIFT effectuera également un certain filtrage des points extrêmes détectés, comme l'exclusion des points de faible contraste et des bords.

Après avoir déterminé l'emplacement des points clés, l'algorithme SIFT effectuera également le positionnement des points clés et l'attribution de direction pour garantir l'invariance à la transformation de rotation. Plus précisément, l'algorithme SIFT calcule la valeur du gradient et la direction des pixels autour de chaque point clé et attribue ces valeurs à l'histogramme du gradient. Ensuite, l'algorithme SIFT sélectionnera le plus grand pic de l'histogramme comme direction principale du point clé et l'utilisera comme direction du point. Cela garantit que les points clés sont invariants en termes de rotation et fournit des informations de direction pour la description ultérieure des fonctionnalités.

Il est à noter que la détection et le positionnement des points clés dans l'algorithme SIFT sont basés sur la pyramide gaussienne et l'opérateur DoG, l'algorithme a donc une bonne robustesse aux changements d'échelle de l'image. Cependant, l'algorithme SIFT présente une complexité de calcul élevée et nécessite un grand nombre d'opérations de convolution et de différence d'image. Par conséquent, certaines optimisations et accélérations sont nécessaires dans des applications pratiques, telles que l'utilisation de technologies d'image intégrale et de filtrage rapide.

En général, l'algorithme SIFT, en tant qu'algorithme d'extraction de caractéristiques efficace, présente une robustesse et une précision élevées et peut gérer efficacement les transformations telles que l'échelle, la rotation et la luminosité de l'image, permettant ainsi une extraction et une identification efficaces. . Cet algorithme a été largement utilisé dans les domaines de la vision par ordinateur et du traitement d’images, apportant d’importantes contributions au développement des systèmes de vision par ordinateur.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Où trouver la courte de la grue à atomide atomique
1 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment la distance de Wasserstein est-elle utilisée dans les tâches de traitement d'images ? Comment la distance de Wasserstein est-elle utilisée dans les tâches de traitement d'images ? Jan 23, 2024 am 10:39 AM

La distance de Wasserstein, également connue sous le nom de distance de EarthMover (EMD), est une mesure utilisée pour mesurer la différence entre deux distributions de probabilité. Par rapport à la divergence KL ou à la divergence JS traditionnelle, la distance de Wasserstein prend en compte les informations structurelles entre les distributions et présente donc de meilleures performances dans de nombreuses tâches de traitement d'image. En calculant le coût minimum de transport entre deux distributions, la distance de Wasserstein permet de mesurer la quantité minimale de travail nécessaire pour transformer une distribution en une autre. Cette métrique est capable de capturer les différences géométriques entre les distributions, jouant ainsi un rôle important dans des tâches telles que la génération d'images et le transfert de style. Par conséquent, la distance de Wasserstein devient le concept

La différence entre les algorithmes de détection de cible à une étape et à deux étapes La différence entre les algorithmes de détection de cible à une étape et à deux étapes Jan 23, 2024 pm 01:48 PM

La détection d'objets est une tâche importante dans le domaine de la vision par ordinateur, utilisée pour identifier des objets dans des images ou des vidéos et localiser leur emplacement. Cette tâche est généralement divisée en deux catégories d'algorithmes, à une étape et à deux étapes, qui diffèrent en termes de précision et de robustesse. Algorithme de détection de cible en une seule étape L'algorithme de détection de cible en une seule étape convertit la détection de cible en un problème de classification. Son avantage est qu'il est rapide et peut terminer la détection en une seule étape. Cependant, en raison d'une simplification excessive, la précision n'est généralement pas aussi bonne que celle de l'algorithme de détection d'objets en deux étapes. Les algorithmes courants de détection d'objets en une seule étape incluent YOLO, SSD et FasterR-CNN. Ces algorithmes prennent généralement l’image entière en entrée et exécutent un classificateur pour identifier l’objet cible. Contrairement aux algorithmes traditionnels de détection de cibles en deux étapes, ils n'ont pas besoin de définir des zones à l'avance, mais de prédire directement

Explorez les principes de base et le processus de mise en œuvre des algorithmes d'échantillonnage imbriqués Explorez les principes de base et le processus de mise en œuvre des algorithmes d'échantillonnage imbriqués Jan 22, 2024 pm 09:51 PM

L'algorithme d'échantillonnage imbriqué est un algorithme d'inférence statistique bayésien efficace utilisé pour calculer l'intégrale ou la sommation sous des distributions de probabilité complexes. Il fonctionne en décomposant l'espace des paramètres en plusieurs hypercubes de volume égal, et en « poussant » progressivement et itérativement l'un des hypercubes de plus petit volume, puis en remplissant l'hypercube avec des échantillons aléatoires pour mieux estimer la valeur intégrale de la distribution de probabilité. Grâce à une itération continue, l'algorithme d'échantillonnage imbriqué peut obtenir des valeurs intégrales et des limites de l'espace des paramètres de haute précision, qui peuvent être appliquées à des problèmes statistiques tels que la comparaison de modèles, l'estimation des paramètres et la sélection de modèles. L'idée principale de cet algorithme est de transformer des problèmes d'intégration complexes en une série de problèmes d'intégration simples et d'approcher la véritable valeur intégrale en réduisant progressivement le volume de l'espace des paramètres. Chaque étape d'itération échantillonne aléatoirement dans l'espace des paramètres

Analyse approfondie des principes de fonctionnement et des caractéristiques du modèle Vision Transformer (VIT) Analyse approfondie des principes de fonctionnement et des caractéristiques du modèle Vision Transformer (VIT) Jan 23, 2024 am 08:30 AM

VisionTransformer (VIT) est un modèle de classification d'images basé sur Transformer proposé par Google. Contrairement aux modèles CNN traditionnels, VIT représente les images sous forme de séquences et apprend la structure de l'image en prédisant l'étiquette de classe de l'image. Pour y parvenir, VIT divise l'image d'entrée en plusieurs patchs et concatène les pixels de chaque patch via des canaux, puis effectue une projection linéaire pour obtenir les dimensions d'entrée souhaitées. Enfin, chaque patch est aplati en un seul vecteur, formant la séquence d'entrée. Grâce au mécanisme d'auto-attention de Transformer, VIT est capable de capturer la relation entre les différents correctifs et d'effectuer une extraction efficace des fonctionnalités et une prédiction de classification. Cette représentation d'image sérialisée est

Comment utiliser la technologie IA pour restaurer d'anciennes photos (avec exemples et analyse de code) Comment utiliser la technologie IA pour restaurer d'anciennes photos (avec exemples et analyse de code) Jan 24, 2024 pm 09:57 PM

La restauration de photos anciennes est une méthode d'utilisation de la technologie de l'intelligence artificielle pour réparer, améliorer et améliorer de vieilles photos. Grâce à des algorithmes de vision par ordinateur et d’apprentissage automatique, la technologie peut identifier et réparer automatiquement les dommages et les imperfections des anciennes photos, les rendant ainsi plus claires, plus naturelles et plus réalistes. Les principes techniques de la restauration de photos anciennes incluent principalement les aspects suivants : 1. Débruitage et amélioration de l'image Lors de la restauration de photos anciennes, elles doivent d'abord être débruitées et améliorées. Des algorithmes et des filtres de traitement d'image, tels que le filtrage moyen, le filtrage gaussien, le filtrage bilatéral, etc., peuvent être utilisés pour résoudre les problèmes de bruit et de taches de couleur, améliorant ainsi la qualité des photos. 2. Restauration et réparation d'images Les anciennes photos peuvent présenter certains défauts et dommages, tels que des rayures, des fissures, une décoloration, etc. Ces problèmes peuvent être résolus par des algorithmes de restauration et de réparation d’images

Application de la technologie de l'IA à la reconstruction d'images en super-résolution Application de la technologie de l'IA à la reconstruction d'images en super-résolution Jan 23, 2024 am 08:06 AM

La reconstruction d'images en super-résolution est le processus de génération d'images haute résolution à partir d'images basse résolution à l'aide de techniques d'apprentissage en profondeur, telles que les réseaux neuronaux convolutifs (CNN) et les réseaux contradictoires génératifs (GAN). Le but de cette méthode est d'améliorer la qualité et les détails des images en convertissant des images basse résolution en images haute résolution. Cette technologie trouve de nombreuses applications dans de nombreux domaines, comme l’imagerie médicale, les caméras de surveillance, les images satellites, etc. Grâce à la reconstruction d’images en super-résolution, nous pouvons obtenir des images plus claires et plus détaillées, ce qui permet d’analyser et d’identifier plus précisément les cibles et les caractéristiques des images. Méthodes de reconstruction Les méthodes de reconstruction d'images en super-résolution peuvent généralement être divisées en deux catégories : les méthodes basées sur l'interpolation et les méthodes basées sur l'apprentissage profond. 1) Méthode basée sur l'interpolation Reconstruction d'images en super-résolution basée sur l'interpolation

Quel est le rôle du gain d'information dans l'algorithme id3 ? Quel est le rôle du gain d'information dans l'algorithme id3 ? Jan 23, 2024 pm 11:27 PM

L'algorithme ID3 est l'un des algorithmes de base de l'apprentissage des arbres de décision. Il sélectionne le meilleur point de partage en calculant le gain d'informations de chaque fonctionnalité pour générer un arbre de décision. Le gain d'informations est un concept important dans l'algorithme ID3, utilisé pour mesurer la contribution des caractéristiques à la tâche de classification. Cet article présentera en détail le concept, la méthode de calcul et l'application du gain d'information dans l'algorithme ID3. 1. Le concept d'entropie de l'information L'entropie de l'information est un concept de la théorie de l'information qui mesure l'incertitude des variables aléatoires. Pour un nombre de variable aléatoire discrète, et p(x_i) représente la probabilité que la variable aléatoire X prenne la valeur x_i. lettre

Introduction à l'algorithme Wu-Manber et aux instructions d'implémentation Python Introduction à l'algorithme Wu-Manber et aux instructions d'implémentation Python Jan 23, 2024 pm 07:03 PM

L'algorithme Wu-Manber est un algorithme de correspondance de chaînes utilisé pour rechercher efficacement des chaînes. Il s'agit d'un algorithme hybride qui combine les avantages des algorithmes de Boyer-Moore et de Knuth-Morris-Pratt pour fournir une correspondance de modèles rapide et précise. Étape 1 de l'algorithme Wu-Manber. Créez une table de hachage qui mappe chaque sous-chaîne possible du modèle à la position du modèle où cette sous-chaîne apparaît. 2. Cette table de hachage est utilisée pour identifier rapidement les emplacements de départ potentiels des modèles dans le texte. 3. Parcourez le texte et comparez chaque caractère au caractère correspondant dans le modèle. 4. Si les caractères correspondent, vous pouvez passer au caractère suivant et poursuivre la comparaison. 5. Si les caractères ne correspondent pas, vous pouvez utiliser une table de hachage pour déterminer le prochain caractère potentiel du modèle.

See all articles