Maison Périphériques technologiques IA Application de stratégies de décodage dans de grands modèles de langage

Application de stratégies de décodage dans de grands modèles de langage

Jan 22, 2024 pm 08:15 PM
机器学习

Application de stratégies de décodage dans de grands modèles de langage

Le modèle linguistique à grande échelle est une technologie clé dans le domaine du traitement du langage naturel, montrant de solides performances dans diverses tâches. La stratégie de décodage est l'un des aspects importants de la génération de texte par le modèle. Cet article détaillera les stratégies de décodage dans les grands modèles de langage et discutera de leurs avantages et inconvénients.

1. Aperçu de la stratégie de décodage

Dans les grands modèles de langage, la stratégie de décodage est une méthode permettant de générer des séquences de texte. Les stratégies de décodage courantes incluent la recherche gourmande, la recherche par faisceau et la recherche aléatoire. La recherche gourmande est une méthode simple et directe qui sélectionne à chaque fois le mot avec la probabilité la plus élevée comme mot suivant, mais peut ignorer d'autres possibilités. La recherche par faisceau ajoute une limite de largeur à la recherche gourmande, ne conservant que les mots candidats ayant la probabilité la plus élevée, augmentant ainsi la diversité. La recherche aléatoire sélectionne aléatoirement le mot suivant, ce qui peut produire plus de diversité mais peut réduire la qualité globale. Ces méthodes diffèrent en termes de longueur de séquence de texte, de taille de l'espace de recherche, de complexité de recherche, etc. prises en compte lors du processus de recherche. Lors d'une mise en œuvre spécifique, une stratégie de décodage appropriée peut être sélectionnée en fonction des exigences.

2. Recherche gourmande

La recherche gourmande est une stratégie de décodage simple qui sélectionne le mot avec la probabilité la plus élevée à chaque pas de temps comme sortie suivante. Son avantage est qu'il est rapide et particulièrement adapté à la génération de courtes séquences de texte. Cependant, la recherche gourmande présente également des inconvénients évidents. Parce qu'il ne prend en compte que la solution optimale actuelle, il est facile de tomber dans la solution optimale locale, ce qui entraîne la génération de séquences de texte répétées ou déraisonnables. De plus, la recherche gourmande ne parvient pas à exploiter tout le potentiel du modèle. Par conséquent, dans certaines tâches, des stratégies de décodage plus complexes peuvent devoir être envisagées pour surmonter les limites de la recherche gourmande.

3. Recherche par faisceau

La recherche par faisceau est une méthode améliorée basée sur la recherche gourmande. Elle sélectionne plusieurs mots avec la probabilité la plus élevée comme alternatives à chaque pas de temps, puis sélectionne le meilleur parmi les mots alternatifs. la prochaine sortie. L’avantage de la recherche par faisceau est qu’elle permet d’obtenir de meilleurs résultats sans augmenter trop la complexité des calculs. L’inconvénient est qu’il est facile de tomber dans la solution optimale locale et que les résultats de la recherche par faisceau peuvent être légèrement moins bons que ceux des autres méthodes de recherche.

4. Recherche aléatoire

La recherche aléatoire est une méthode basée sur un échantillonnage aléatoire. Elle sélectionne les mots prédits par le modèle en sortie avec une certaine probabilité à chaque pas de temps, ou sélectionne au hasard un mot parmi les alternatives. comme sortie. L'avantage de la recherche aléatoire est qu'elle peut éviter de tomber dans la solution optimale locale et générer des séquences de texte plus diverses, mais l'inconvénient est que les résultats générés peuvent ne pas être suffisamment stables et nécessiter plusieurs échantillonnages pour obtenir des résultats fiables.

5. Recherche de faisceaux et échantillonnage d'importance

La recherche de faisceaux et l'échantillonnage d'importance sont des méthodes améliorées basées sur la recherche de faisceaux et la recherche aléatoire. La recherche par faisceau permet d'obtenir de meilleurs résultats en augmentant la largeur du faisceau et la profondeur de recherche, mais augmente la complexité informatique. L'échantillonnage par importance utilise une certaine stratégie d'échantillonnage pour équilibrer la profondeur et l'étendue de la recherche, obtenant ainsi de meilleurs résultats sans augmenter trop la complexité informatique.

6. Évaluation des stratégies de décodage

Lors de l'évaluation des stratégies de décodage, les aspects suivants sont généralement pris en compte :

1 Qualité de la génération : c'est-à-dire si la séquence de texte générée a une fluidité, une précision et des caractéristiques telles que. comme cohérence.

2. Complexité informatique : c'est-à-dire les ressources informatiques et le temps nécessaires pour générer des séquences de texte, ainsi que l'efficacité et l'évolutivité de la stratégie de recherche.

3. Générer de la diversité : c'est-à-dire si la séquence de texte générée présente des caractéristiques telles que la diversité et la nouveauté, et la capacité de la stratégie de recherche à éviter de générer du texte en double.

4. Robustesse des attaques adverses : c'est-à-dire la capacité et la robustesse de la stratégie de recherche face aux attaques adverses.

En général, la stratégie de décodage est un composant très important des modèles de langage à grande échelle. Elle peut affecter la qualité, la diversité et l'efficacité informatique des séquences de texte générées par le modèle. Différentes stratégies de décodage présentent différents avantages et inconvénients selon les scénarios, et une stratégie de décodage appropriée doit être sélectionnée en fonction des exigences spécifiques de la tâche et de l'expérience pratique.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

15 outils d'annotation d'images gratuits open source recommandés 15 outils d'annotation d'images gratuits open source recommandés Mar 28, 2024 pm 01:21 PM

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Jun 01, 2024 am 10:58 AM

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Identifier le surapprentissage et le sous-apprentissage grâce à des courbes d'apprentissage Identifier le surapprentissage et le sous-apprentissage grâce à des courbes d'apprentissage Apr 29, 2024 pm 06:50 PM

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Transparent! Une analyse approfondie des principes des principaux modèles de machine learning ! Transparent! Une analyse approfondie des principes des principaux modèles de machine learning ! Apr 12, 2024 pm 05:55 PM

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

L'évolution de l'intelligence artificielle dans l'exploration spatiale et l'ingénierie des établissements humains L'évolution de l'intelligence artificielle dans l'exploration spatiale et l'ingénierie des établissements humains Apr 29, 2024 pm 03:25 PM

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

IA explicable : Expliquer les modèles IA/ML complexes IA explicable : Expliquer les modèles IA/ML complexes Jun 03, 2024 pm 10:08 PM

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

See all articles