


Une brève introduction aux caractéristiques et aux méthodes de modélisation des données de séries chronologiques
Les données de séries chronologiques sont un outil important pour comprendre et prédire les tendances et les modèles dans divers domaines. En analysant et en modélisant les caractéristiques et les techniques des données de séries chronologiques, nous pouvons prendre des décisions et des prévisions plus précises. Avec l’application de l’apprentissage automatique et de l’apprentissage profond, la capacité d’analyse des données de séries chronologiques devient de plus en plus puissante. Ces technologies nous fournissent des informations plus approfondies et nous aident à découvrir des modèles et des tendances cachés dans les données, nous permettant ainsi de prendre des décisions plus judicieuses.
Cet article comprendra brièvement les caractéristiques et les techniques de modélisation des données de séries chronologiques.
Caractéristiques des données de séries chronologiques
Les données de séries chronologiques présentent plusieurs caractéristiques uniques qui les différencient des autres types de données.
Les données de séries chronologiques sont enregistrées dans un ordre spécifique et chaque point de données a son moment spécifique. Par conséquent, l’ordre des points de données est très critique et affectera directement les résultats de l’analyse et de la modélisation des données.
Tendance : les données de séries chronologiques affichent généralement des tendances, telles que des données augmentant ou diminuant progressivement au fil du temps. Ces tendances peuvent être causées par divers facteurs, tels que la saisonnalité ou les tendances sous-jacentes des données.
Périodicité : les données de séries chronologiques peuvent également présenter une périodicité, qui est un modèle qui se répète régulièrement, par exemple quotidiennement, hebdomadairement ou annuellement. Par exemple, les ventes au détail peuvent être plus élevées pendant les vacances, ou les températures peuvent être plus élevées en été.
Random : les données de séries chronologiques peuvent également contenir du bruit, qui sont des changements aléatoires dans les données qui n'appartiennent à aucune tendance ou modèle sous-jacent.
Techniques d'analyse et de modélisation de données de séries chronologiques
Il existe une variété de techniques qui peuvent être utilisées pour analyser et modéliser des données de séries chronologiques. Voici quelques-unes des techniques les plus couramment utilisées :
Visualisation : L'un des moyens les plus simples et les plus efficaces d'analyser les données de séries chronologiques consiste à créer une visualisation des données. Cela peut être fait à l’aide d’un graphique linéaire, d’un graphique à barres ou d’autres types de graphiques. La visualisation peut aider à identifier les tendances et les modèles dans les données ainsi que tout caractère saisonnier ou aléatoire.
Décomposition : les données de séries chronologiques peuvent être décomposées en leurs composants tels que la tendance, la saisonnalité et les résidus. Cela peut être fait en utilisant des techniques telles que la factorisation additive et multiplicative. La décomposition peut aider à comprendre les modèles sous-jacents des données et à faire des prédictions sur les futurs points de données.
Prévisions : les données de séries chronologiques peuvent être utilisées pour faire des prédictions sur les futurs points de données. Cela peut être réalisé à l'aide de techniques telles que les moyennes mobiles, le lissage exponentiel et les modèles ARIMA. Les prévisions aident les organisations à prendre des décisions importantes basées sur les tendances et modèles futurs prévus.
Apprentissage automatique : ces dernières années, les techniques d'apprentissage automatique sont devenues de plus en plus populaires pour analyser et modéliser des données de séries chronologiques. Des techniques telles que les réseaux neuronaux et les machines à vecteurs de support ont été utilisées pour effectuer des prédictions, classer les données de séries chronologiques et identifier des modèles dans les données. Ces techniques sont particulièrement utiles pour traiter des ensembles de données de séries chronologiques vastes et complexes.
Détection des anomalies : une autre technique importante dans les données de séries chronologiques est la détection des anomalies, qui est le processus d'identification des anomalies ou des points de données qui s'écartent du comportement normal des données. La détection d'anomalies peut être utilisée pour identifier des modèles ou des événements inhabituels dans les données de séries chronologiques, comme une augmentation soudaine du trafic sur un site Web ou une baisse des cours boursiers.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g
