Étapes pour implémenter l'algorithme des faces propres
L'algorithme Eigenface est une méthode de reconnaissance faciale courante. Cet algorithme utilise l'analyse en composantes principales pour extraire les principales caractéristiques des visages de l'ensemble d'entraînement afin de former des vecteurs de caractéristiques. L'image du visage à reconnaître sera également convertie en un vecteur de caractéristiques, et la reconnaissance du visage est effectuée en calculant la distance entre chaque vecteur de caractéristiques dans l'ensemble d'apprentissage. L'idée centrale de cet algorithme est de déterminer l'identité d'un visage à reconnaître en comparant sa similarité avec des visages connus. En analysant les principales composantes de l’ensemble d’apprentissage, l’algorithme peut extraire le vecteur qui représente le mieux les traits du visage, améliorant ainsi la précision de la reconnaissance. L'algorithme du visage propre est simple et efficace. Par conséquent, dans le domaine de la reconnaissance faciale, les étapes de l'algorithme du visage propre sont les suivantes :
1. Collecter un ensemble de données d'image de visage
L'algorithme du visage propre nécessite un ensemble de données contenant plusieurs personnes L'ensemble de données d'image du visage est utilisé comme ensemble d'entraînement, et les images doivent être claires et les conditions de prise de vue cohérentes.
2. Convertissez l'image en vecteur
Convertissez chaque image de visage en vecteur Vous pouvez aligner la valeur de gris de chaque pixel de l'image pour former un vecteur. Les dimensions de chaque vecteur correspondent au nombre de pixels de l'image.
3. Calculez le visage moyen
Ajoutez tous les vecteurs et divisez par le nombre de vecteurs pour obtenir le vecteur du visage moyen. Le visage moyen représente les caractéristiques moyennes sur l’ensemble de l’ensemble de données.
4. Calculez la matrice de covariance
Soustrayez le vecteur de visage moyen de chaque vecteur pour obtenir un nouveau vecteur. Formez ces nouveaux vecteurs dans une matrice et calculez sa matrice de covariance. La matrice de covariance reflète la corrélation entre les vecteurs individuels de l'ensemble de données.
5. Calculer les vecteurs propres
Effectuer une analyse en composantes principales sur la matrice de covariance pour obtenir ses valeurs propres et ses vecteurs propres. Le vecteur de caractéristiques représente les principales caractéristiques de l'ensemble de données et peut être utilisé pour représenter les principales caractéristiques du visage. Habituellement, seuls les premiers vecteurs de caractéristiques sont sélectionnés en tant que vecteurs de caractéristiques représentant les visages.
6. Générer des faces propres
Les vecteurs propres sélectionnés sont formés dans une matrice, appelée "matrice des faces propres", et chaque colonne représente une face propre. Eigenface est un ensemble d'images qui représentent les principales caractéristiques de l'ensemble de données et peuvent être considérées comme une combinaison linéaire du « visage moyen » et du « visage différent » de l'image du visage.
7. Convertissez l'image du visage en un vecteur de caractéristiques
Convertissez l'image du visage à reconnaître en un vecteur et soustrayez le vecteur du visage moyen. Le nouveau vecteur ainsi obtenu est le vecteur caractéristique de l’image du visage.
8. Calculez la distance entre les vecteurs caractéristiques
Comparez le vecteur caractéristique de l'image du visage à reconnaître avec le vecteur caractéristique de chaque image du visage dans l'ensemble d'entraînement et calculez la distance euclidienne entre eux. Le visage représenté par le vecteur avec la plus petite distance est le résultat de la reconnaissance.
L'avantage de l'algorithme de face propre est qu'il peut gérer des ensembles de données à grande échelle et effectuer une reconnaissance rapidement. Cependant, cet algorithme est sensible aux changements d’éclairage, d’angle et d’autres conditions de l’image, et est sujet à une mauvaise reconnaissance. Dans le même temps, cet algorithme nécessite une grande quantité d’espace de calcul et de stockage et n’est pas adapté aux applications ayant des exigences élevées en temps réel.
Enfin, bien que l'algorithme des faces propres présente les avantages de traiter des ensembles de données à grande échelle et d'une reconnaissance rapide, il est sensible aux changements de conditions telles que l'éclairage et l'angle de l'image, et nécessite une grande quantité de calcul et d'espace de stockage. .
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
