B-tree est un arbre de recherche binaire hautement équilibré. Pour effectuer une opération d'insertion, vous devez d'abord obtenir la position du nœud inséré pour qu'il soit plus grand que le sous-arbre de gauche et plus petit que le sous-arbre de droite lors de la division. nécessaire.
<code>BreeInsertion(T, k)r root[T]if n[r] = 2t - 1<br/> s = AllocateNode()<br/> root[T] = s<br/> leaf[s] = FALSE<br/> n[s] <- 0<br/> c1[s] <- r<br/> BtreeSplitChild(s, 1, r)<br/> BtreeInsertNonFull(s, k)else BtreeInsertNonFull(r, k)BtreeInsertNonFull(x, k)i = n[x]if leaf[x]<br/> while i ≥ 1 and k < keyi[x]<br/> keyi+1 [x] = keyi[x]<br/> i = i - 1<br/> keyi+1[x] = k<br/> n[x] = n[x] + 1else while i ≥ 1 and k < keyi[x]<br/> i = i - 1<br/> i = i + 1<br/> if n[ci[x]] == 2t - 1<br/> BtreeSplitChild(x, i, ci[x])<br/> if k &rt; keyi[x]<br/> i = i + 1<br/> BtreeInsertNonFull(ci[x], k)BtreeSplitChild(x, i)BtreeSplitChild(x, i, y)z = AllocateNode()leaf[z] = leaf[y]n[z] = t - 1for j = 1 to t - 1<br/> keyj[z] = keyj+t[y]if not leaf [y]<br/> for j = 1 to t<br/> cj[z] = cj + t[y]n[y] = t - 1for j = n[x] + 1 to i + 1<br/> cj+1[x] = cj[x]ci+1[x] = zfor j = n[x] to i<br/> keyj+1[x] = keyj[x]keyi[x] = keyt[y]n[x] = n[x] + 1</code>
<code>class BTreeNode:<br/> def __init__(self, leaf=False):<br/> self.leaf = leaf<br/> self.keys = []<br/> self.child = []<br/> <br/>class BTree:<br/> def __init__(self, t):<br/> self.root = BTreeNode(True)<br/> self.t = t<br/> <br/> def insert(self, k):<br/> root = self.root<br/> if len(root.keys) == (2 * self.t) - 1:<br/> temp = BTreeNode()<br/> self.root = temp<br/> temp.child.insert(0, root)<br/> self.split_child(temp, 0)<br/> self.insert_non_full(temp, k)<br/> else:<br/> self.insert_non_full(root, k)<br/> <br/> def insert_non_full(self, x, k):<br/> i = len(x.keys) - 1<br/> if x.leaf:<br/> x.keys.append((None, None))<br/> while i >= 0 and k[0] < x.keys[i][0]:<br/> x.keys[i + 1] = x.keys[i]<br/> i -= 1<br/> x.keys[i + 1] = k<br/> else:<br/> while i >= 0 and k[0] < x.keys[i][0]:<br/> i -= 1<br/> i += 1<br/> if len(x.child[i].keys) == (2 * self.t) - 1:<br/> self.split_child(x, i)<br/> if k[0] > x.keys[i][0]:<br/> i += 1<br/> self.insert_non_full(x.child[i], k)<br/> <br/> def split_child(self, x, i):<br/> t = self.t<br/> y = x.child[i]<br/> z = BTreeNode(y.leaf)<br/> x.child.insert(i + 1, z)<br/> x.keys.insert(i, y.keys[t - 1])<br/> z.keys = y.keys[t: (2 * t) - 1]<br/> y.keys = y.keys[0: t - 1]<br/> if not y.leaf:<br/> z.child = y.child[t: 2 * t]<br/> y.child = y.child[0: t - 1]<br/> <br/> def print_tree(self, x, l=0):<br/> print("Level ", l, " ", len(x.keys), end=":")<br/> for i in x.keys:<br/> print(i, end=" ")<br/> print()<br/> l += 1<br/> if len(x.child) > 0:<br/> for i in x.child:<br/> self.print_tree(i, l)<br/> <br/>def main():<br/> B = BTree(3)<br/> <br/> for i in range(10):<br/> B.insert((i, 2 * i))<br/> <br/> B.print_tree(B.root)<br/> <br/>if __name__ == '__main__':<br/> main()</code>
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!