


Application d'algorithmes de recommandation dans l'apprentissage automatique
Les algorithmes de recommandation sont largement utilisés dans les secteurs du commerce électronique et des vidéos courtes. Ils analysent les préférences et les intérêts des utilisateurs, filtrent et traitent des données massives et fournissent aux utilisateurs les informations les plus pertinentes. Cet algorithme peut recommander avec précision un contenu intéressant en fonction des besoins personnels de l'utilisateur.
L'algorithme de recommandation est une méthode utilisée pour déterminer la compatibilité des utilisateurs et des objets, ainsi que la similarité entre les utilisateurs et les éléments, pour faire des recommandations. Cet algorithme est très utile tant pour les utilisateurs que pour les services fournis. Avec ces solutions, nous pouvons améliorer la qualité et les processus décisionnels. En outre, ces algorithmes peuvent être largement utilisés pour recommander divers éléments, notamment des films, des livres, des actualités, des articles, des emplois et des publicités.
Les algorithmes de recommandation sont principalement divisés en trois types :
- Filtrage basé sur le contenu
- Filtrage collaboratif
- Système de recommandation hybride
Filtrage basé sur le contenu
Cette forme d'algorithme de recommandation est basée sur les éléments que l'utilisateur a précédemment recherché. Le contenu affiche les éléments associés. Les attributs/balises du produit que l'utilisateur aime sont appelés contenu dans ce cas. Dans ce type de système, les articles sont étiquetés avec des mots-clés et le système recherche dans la base de données pour comprendre les besoins de l'utilisateur et recommande finalement différents produits souhaités par l'utilisateur.
Prenons l'exemple de l'algorithme de recommandation de films. Chaque film se voit attribuer un genre, également appelé balise ou attribut. Supposons que lorsqu'un utilisateur accède pour la première fois au système, le système ne dispose d'aucune information sur l'utilisateur. Par conséquent, le système essaiera d’abord de recommander des films populaires à l’utilisateur ou de collecter des informations sur l’utilisateur en lui demandant de remplir un formulaire. Au fil du temps, les utilisateurs peuvent évaluer certains films, par exemple en attribuant une bonne note aux films d'action et aux films d'animation une note faible. Le résultat est que l’algorithme de recommandation recommandera davantage de films d’action aux utilisateurs.
Avantages du filtrage basé sur le contenu
- Étant donné que les recommandations sont adaptées à un seul utilisateur, le modèle ne nécessite pas de données provenant d'autres utilisateurs.
- Facilitez la mise à l'échelle.
- Le modèle peut identifier les intérêts personnels de l’utilisateur et recommander des articles qui intéressent seulement quelques autres utilisateurs.
Inconvénients du filtrage basé sur le contenu
- Dans la mesure où la représentation des fonctionnalités du projet est conçue à la main, cette technique nécessite beaucoup de connaissances du domaine.
- Le modèle ne peut faire que des recommandations basées sur les intérêts antérieurs de l'utilisateur.
Filtrage collaboratif
Le filtrage basé sur la collaboration est une méthode permettant de recommander de nouveaux articles aux consommateurs en fonction des intérêts et des préférences d'autres utilisateurs similaires. Par exemple, lors d'un achat en ligne, le système peut recommander de nouveaux produits sur la base d'informations telles que « Les clients qui ont acheté ceci l'ont également acheté ». Cette approche est supérieure au filtrage basé sur le contenu car elle ne repose pas sur l'interaction de l'utilisateur avec le contenu, mais formule plutôt des recommandations basées sur le comportement historique de l'utilisateur. En analysant les données passées, nous pouvons supposer que les utilisateurs seront intéressés par des articles similaires à l'avenir. Cette approche évite les limites du filtrage basé sur le contenu et fournit des recommandations plus précises.
Le filtrage collaboratif peut être divisé en deux catégories :
Dans le filtrage collaboratif basé sur les utilisateurs, le système identifie les utilisateurs ayant des préférences d'achat similaires et calcule la similarité en fonction de leur comportement d'achat.
L'algorithme de filtrage collaboratif basé sur les articles recherche d'autres articles similaires à l'article acheté par le consommateur, et la similarité est calculée en fonction des articles plutôt que des utilisateurs.
Avantages du filtrage collaboratif
- Cela fonctionne bien même si les données sont petites.
- Ce modèle aide les utilisateurs à découvrir un nouvel intérêt pour un article spécifique, bien que si d'autres utilisateurs ont le même intérêt, le modèle peut toujours le recommander.
- Aucune connaissance du domaine requise.
Inconvénients du filtrage collaboratif
- Il ne peut pas gérer de nouvelles choses car le modèle n'est pas entraîné sur les objets nouvellement ajoutés à la base de données.
- L'importance des fonctionnalités secondaires est ignorée.
Algorithme de recommandation hybride
Différents types d'algorithmes de recommandation ont leurs propres avantages et inconvénients, mais sont limités lorsqu'ils sont utilisés seuls, en particulier lorsque plusieurs sources de données sont utilisées pour le même problème.
Le parallèle et le séquentiel sont les méthodes de conception les plus courantes des systèmes de recommandation hybrides. Dans une architecture parallèle, plusieurs algorithmes de recommandation fournissent des entrées en même temps et combinent leurs résultats de sortie pour obtenir un seul résultat de recommandation. L'architecture séquentielle transmet les paramètres d'entrée à un moteur de recommandation, qui génère des résultats de recommandation, puis les transmet au recommandateur suivant de la série. Cette approche de conception peut améliorer la précision et l'efficacité du système de recommandation.
Avantages des systèmes de recommandation hybrides
Les systèmes hybrides intègrent plusieurs modèles pour surmonter les lacunes d'un seul modèle. Dans l’ensemble, cela atténue les inconvénients de l’utilisation d’un modèle unique et permet de générer des recommandations plus fiables. En conséquence, les utilisateurs recevront des recommandations plus puissantes et personnalisées.
Inconvénients des systèmes de recommandation hybrides
Ces modèles sont souvent difficiles à calculer et nécessitent une grande base de données d'évaluations et d'autres critères pour rester à jour. Sans mesures à jour, il est difficile de se recycler et de fournir de nouvelles recommandations avec des éléments et des évaluations mis à jour par différents utilisateurs.
Dans l'ensemble, l'algorithme de recommandation permet aux utilisateurs de choisir facilement leurs options préférées et leurs domaines d'intérêt, adaptés à leurs préférences. Actuellement, les algorithmes de recommandation sont utilisés dans de nombreuses applications courantes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.
