


Application de la technologie de l'IA à la reconstruction d'images en super-résolution
La reconstruction d'images en super-résolution est le processus de génération d'images haute résolution à partir d'images basse résolution à l'aide de techniques d'apprentissage en profondeur, telles que les réseaux neuronaux convolutifs (CNN) et les réseaux contradictoires génératifs (GAN). Le but de cette méthode est d'améliorer la qualité et les détails des images en convertissant des images basse résolution en images haute résolution. Cette technologie trouve de nombreuses applications dans de nombreux domaines, comme l’imagerie médicale, les caméras de surveillance, les images satellites, etc. Grâce à la reconstruction d’images en super-résolution, nous pouvons obtenir des images plus claires et plus détaillées, ce qui permet d’analyser et d’identifier plus précisément les cibles et les caractéristiques des images.
Méthodes de reconstruction
Les méthodes de reconstruction d'images en super-résolution peuvent généralement être divisées en deux catégories : les méthodes basées sur l'interpolation et les méthodes basées sur l'apprentissage profond.
1) Méthode basée sur l'interpolation
La méthode de reconstruction d'image super-résolution basée sur l'interpolation est une technique simple et couramment utilisée. Il génère des images haute résolution à partir d'images basse résolution en utilisant des algorithmes d'interpolation. Les algorithmes d'interpolation estiment les valeurs de pixels dans une image haute résolution en fonction des valeurs de pixels dans une image basse résolution. Les algorithmes d'interpolation courants incluent l'interpolation bilinéaire, l'interpolation bicubique et l'interpolation de Lanczos. Ces algorithmes peuvent utiliser les informations des pixels environnants pour estimer les valeurs des pixels, améliorant ainsi le détail et la clarté de l'image. En choisissant un algorithme d'interpolation approprié, différents degrés d'amélioration de l'image et d'effets de reconstruction peuvent être obtenus. Cependant, les méthodes basées sur l'interpolation présentent également certaines limites, telles que l'incapacité de récupérer les détails et les structures manquantes, et la possibilité de provoquer un flou ou une distorsion de l'image. Par conséquent, dans les applications pratiques, il est nécessaire de considérer de manière globale l'effet et le calcul de l'algorithme
2) Méthode basée sur l'apprentissage en profondeur
La méthode basée sur l'apprentissage en profondeur est une méthode de reconstruction d'image en super-résolution plus avancée . Cette approche utilise généralement des techniques d'apprentissage en profondeur telles que les réseaux de neurones convolutifs (CNN) ou les réseaux contradictoires génératifs (GAN) pour générer des images haute résolution à partir d'images basse résolution. Ces modèles d'apprentissage profond peuvent apprendre les relations de cartographie entre les images provenant de grands ensembles de données et exploiter ces relations pour générer des images haute résolution.
Convolutional Neural Network (CNN) est une méthode couramment utilisée basée sur l'apprentissage profond. Cette méthode utilise généralement un réseau composé de couches convolutives, de couches de regroupement et de couches entièrement connectées pour modéliser la relation de mappage entre les images. Les modèles CNN incluent généralement un encodeur et un décodeur, où la couche d'encodeur convertit les images basse résolution en vecteurs de caractéristiques, et la couche de décodeur convertit les vecteurs de caractéristiques en images haute résolution.
Generative Adversarial Network (GAN) est une autre méthode couramment utilisée basée sur l'apprentissage en profondeur. Cette approche utilise deux modèles d'apprentissage profond : le générateur et le discriminateur. Le modèle générateur convertit une image basse résolution en image haute résolution et tente de tromper le modèle discriminateur pour qu'il soit incapable de faire la distinction entre l'image générée et l'image haute résolution réelle. Le modèle discriminateur tente de faire la distinction entre les images générées par le générateur et les images réelles à haute résolution. En entraînant continuellement ces deux modèles de manière itérative, le modèle générateur peut générer des images haute résolution de meilleure qualité.
Étapes de reconstruction
Les étapes de reconstruction d'image en super-résolution comprennent généralement les étapes suivantes :
1. Collecte et préparation d'ensembles de données
Afin d'entraîner la reconstruction d'image en super-résolution. modèle, il est nécessaire de collecter un grand nombre de paires d'images basse résolution et haute résolution. Ces paires d'images nécessitent un prétraitement tel que le recadrage, le redimensionnement et la normalisation.
2. Sélection et formation des modèles
La sélection des modèles appropriés et leur formation sont des étapes clés pour la reconstruction d'images en super-résolution. On peut choisir entre des méthodes basées sur l'interpolation ou des méthodes basées sur l'apprentissage profond. Les méthodes basées sur le deep learning nécessitent généralement des ensembles de données plus volumineux et des temps de formation plus longs. Au cours du processus de formation, une fonction de perte appropriée doit être sélectionnée pour évaluer les performances du modèle, telle que l'erreur quadratique moyenne (MSE) ou la perte de perception (perte de perception).
3. Optimisation et ajustement du modèle
Après avoir entraîné le modèle, celui-ci doit être ajusté et optimisé pour améliorer ses performances. Vous pouvez essayer différents hyperparamètres et algorithmes d'optimisation et utiliser un ensemble de validation pour évaluer les performances du modèle.
4. Tests et évaluation
Utilisez l'ensemble de test pour tester les performances du modèle et évaluer les images haute résolution générées. Diverses mesures d'évaluation peuvent être utilisées, telles que le rapport signal/bruit de pointe (PSNR), l'indice de similarité structurelle (SSIM) et l'indice de qualité perceptuelle (PI), etc.
Exemple de code
Ce qui suit est un exemple simple de reconstruction d'image super-résolution basée sur l'apprentissage en profondeur, implémenté à l'aide de TensorFlow et Keras. Dans cet exemple, nous utiliserons un modèle basé sur CNN pour générer des images haute résolution à partir d'images basse résolution.
1. Préparation de l'ensemble de données
Nous utiliserons l'ensemble de données DIV2K, qui contient plusieurs paires d'images de résolutions différentes. Nous utiliserons 800 de ces paires d'images pour la formation et 100 paires d'images pour les tests. Lors de la préparation de l'ensemble de données, nous devons réduire l'image basse résolution à 1/4 avant de la sauvegarder avec l'image haute résolution originale.
2. Sélection et formation des modèles
Nous utiliserons un modèle basé sur CNN pour réaliser une reconstruction d'image en super-résolution. Le modèle comprend un encodeur et un décodeur, l'encodeur comprenant plusieurs couches de convolution et de regroupement pour convertir des images basse résolution en vecteurs de caractéristiques. Le décodeur comprend plusieurs couches de déconvolution et de suréchantillonnage pour convertir les vecteurs de caractéristiques en images haute résolution.
Voici le code d'implémentation du modèle :
from tensorflow.keras.layers import Input, Conv2D, UpSampling2D from tensorflow.keras.models import Model def build_model(): # 输入层 inputs = Input(shape=(None, None, 3)) # 编码器 x = Conv2D(64, 3, activation='relu', padding='same')(inputs) x = Conv2D(64, 3, activation='relu', padding='same')(x) x = Conv2D(64, 3, activation='relu', padding='same')(x) x = Conv2D(64, 3, activation='relu', padding='same')(x) # 解码器 x = Conv2D(64, 3, activation='relu', padding='same')(x) x = Conv2D(64, 3, activation='relu', padding='same')(x) x = Conv2D(64, 3, activation='relu', padding='same')(x) x = Conv2D(64, 3, activation='relu', padding='same')(x) x = UpSampling2D()(x) x = Conv2D(3, 3, activation='sigmoid', padding='same')(x) # 构建模型 model = Model(inputs=inputs, outputs=x) return model
3. Optimisation et ajustement du modèle
Nous utiliserons l'erreur quadratique moyenne (MSE) comme fonction de perte et utiliserons l'optimiseur Adam pour nous entraîner. le modèle. Pendant le processus de formation, nous utiliserons la fonction de rappel EarlyStopping pour éviter le surajustement et enregistrer le modèle sous forme de fichier h5.
Ce qui suit est le code d'optimisation et de réglage du modèle :
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.optimizers import Adam # 构建模型 model = build_model() # 编译模型 model.compile(optimizer=Adam(lr=1e-4), loss='mse') # 设置回调函数 early_stopping = EarlyStopping(monitor='val_loss', patience=5) model_checkpoint = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True, save_weights_only=True) # 训练模型 model.fit(train_X, train_Y, batch_size=16, epochs=100, validation_split=0.1, callbacks=[early_stopping, model_checkpoint])
4 Test et évaluation
Nous utiliserons l'ensemble de test pour tester les performances du modèle et calculer le rapport signal/bruit maximal. rapport (PSNR) et indice de similarité structurelle (SSIM) pour évaluer la qualité des images haute résolution générées.
Voici le code de test et d'évaluation :
from skimage.metrics import peak_signal_noise_ratio, structural_similarity # 加载模型 model.load_weights('model.h5') # 测试模型 test_Y_pred = model.predict(test_X) # 计算 PSNR 和 SSIM psnr = peak_signal_noise_ratio(test_Y, test_Y_pred, data_range=1.0) ssim =structural_similarity(test_Y, test_Y_pred, multichannel=True) print('PSNR:', psnr) print('SSIM:', ssim)
Il convient de noter qu'il ne s'agit que d'un exemple simple et que les applications réelles peuvent nécessiter des modèles plus complexes et des ensembles de données plus volumineux pour obtenir de meilleurs résultats.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S
