Maison Périphériques technologiques IA La différence entre les grands modèles de langage et les modèles d'intégration de mots

La différence entre les grands modèles de langage et les modèles d'intégration de mots

Jan 23, 2024 am 08:24 AM
机器学习

La différence entre les grands modèles de langage et les modèles dintégration de mots

Le modèle de langage à grande échelle et le modèle d'intégration de mots sont deux concepts clés du traitement du langage naturel. Ils peuvent tous deux être appliqués à l’analyse et à la génération de texte, mais les principes et les scénarios d’application sont différents. Les modèles linguistiques à grande échelle sont principalement basés sur des modèles statistiques et probabilistes et conviennent à la génération continue de textes et à une compréhension sémantique. Le modèle d'intégration de mots peut capturer la relation sémantique entre les mots en mappant les mots sur un espace vectoriel, et convient à l'inférence de signification de mot et à la classification de texte.

1. Modèle d'intégration de mots

Le modèle d'intégration de mots est une technologie qui traite les informations textuelles en mappant les mots dans un espace vectoriel de faible dimension. Il convertit les mots d'une langue sous forme vectorielle afin que les ordinateurs puissent mieux comprendre et traiter le texte. Les modèles d'intégration de mots couramment utilisés incluent Word2Vec et GloVe. Ces modèles sont largement utilisés dans les tâches de traitement du langage naturel, telles que la classification de textes, l'analyse des sentiments et la traduction automatique. Ils fournissent aux ordinateurs des informations sémantiques plus riches en capturant les relations sémantiques et grammaticales entre les mots, améliorant ainsi l'efficacité du traitement de texte.

1.Word2Vec

Word2Vec est un modèle d'intégration de mots basé sur un réseau neuronal utilisé pour représenter les mots sous forme de vecteurs continus. Il dispose de deux algorithmes couramment utilisés : CBOW et Skip-gram. CBOW prédit les mots cibles à travers des mots contextuels, tandis que Skip-gram prédit les mots contextuels à travers des mots cibles. L'idée centrale de Word2Vec est d'obtenir la similitude entre les mots en apprenant leur répartition dans leur contexte. En entraînant une grande quantité de données textuelles, Word2Vec peut générer une représentation vectorielle dense pour chaque mot, de sorte que les mots sémantiquement similaires soient plus proches dans l'espace vectoriel. Ce modèle d'intégration de mots est largement utilisé dans les tâches de traitement du langage naturel telles que la classification de texte, l'analyse des sentiments et la traduction automatique.

2.GloVe

GloVe est un modèle d'intégration de mots basé sur la factorisation matricielle. Il utilise des informations statistiques globales et des informations contextuelles locales pour construire une matrice de cooccurrence entre les mots et obtient la représentation vectorielle des mots par décomposition matricielle. L’avantage de GloVe est qu’il peut gérer des corpus à grande échelle et ne nécessite pas d’échantillonnage aléatoire comme Word2Vec.

2. Modèle de langage à grande échelle

Le modèle de langage à grande échelle est un modèle de traitement du langage naturel basé sur des réseaux de neurones. Il peut apprendre la distribution de probabilité du langage à partir d'un corpus à grande échelle pour obtenir un langage naturel. compréhension et génération. Les grands modèles de langage peuvent être utilisés pour diverses tâches de texte, telles que la modélisation du langage, la classification de texte, la traduction automatique, etc.

1.GPT

GPT est un modèle de langage à grande échelle basé sur Transformer, qui apprend la distribution de probabilité d'une langue grâce à une pré-formation et peut générer un texte en langage naturel de haute qualité. Le processus de pré-formation est divisé en deux étapes : la pré-formation non supervisée et la mise au point supervisée. Dans la phase de pré-formation non supervisée, GPT utilise un corpus de texte à grande échelle pour apprendre la distribution de probabilité du langage ; dans la phase de réglage fin supervisé, GPT utilise des données étiquetées pour optimiser les paramètres du modèle afin de s'adapter aux exigences de tâches spécifiques. .

2.BERT

BERT est un autre modèle de langage à grande échelle basé sur Transformer. Il est différent de GPT en ce sens qu'il est bidirectionnel, c'est-à-dire qu'il peut utiliser des informations contextuelles pour prédire des mots en même temps. BERT utilise deux tâches dans la phase de pré-formation : la modélisation du langage de masque et la prédiction de la phrase suivante. La tâche de modélisation du langage de masque consiste à masquer de manière aléatoire certains mots dans la séquence d'entrée et à laisser le modèle prédire ces mots masqués. La tâche de prédiction de phrase suivante consiste à déterminer si deux phrases sont continues ; BERT peut être affiné pour s'adapter à diverses tâches de traitement du langage naturel, telles que la classification de texte, l'étiquetage de séquences, etc.

3. Différences et connexions

Différents objectifs : l'objectif du modèle d'intégration de mots est de mapper les mots dans un espace vectoriel de faible dimension afin que l'ordinateur puisse mieux comprendre et traiter les informations textuelles ; un grand modèle de langage consiste à apprendre la distribution de probabilité d'un langage grâce à une pré-formation pour parvenir à la compréhension et à la génération du langage naturel.

Différents scénarios d'application : les modèles d'intégration de mots sont principalement utilisés dans l'analyse de texte, la récupération d'informations et d'autres tâches, telles que l'analyse des sentiments, les systèmes de recommandation, etc. ; et d'autres tâches, telles que générer des dialogues, générer des articles d'actualité, etc.

Les principes de l'algorithme sont différents : les modèles d'intégration de mots utilisent principalement des algorithmes basés sur des réseaux neuronaux, tels que Word2Vec, GloVe, etc. ; les grands modèles de langage utilisent principalement des algorithmes basés sur Transformer, tels que GPT, BERT, etc.

Différentes tailles de modèles : les modèles d'intégration de mots sont généralement plus petits que les grands modèles de langage, car ils n'ont besoin que d'apprendre les similitudes entre les mots, tandis que les grands modèles de langage doivent apprendre une structure linguistique et des informations sémantiques plus complexes.

Différentes méthodes de pré-formation : les modèles d'intégration de mots utilisent généralement une pré-formation non supervisée, tandis que les grands modèles de langage utilisent généralement un mélange de pré-formation supervisée et non supervisée.

En général, les modèles d'intégration de mots et les grands modèles de langage sont des technologies très importantes dans le traitement du langage naturel. Leurs différences résident principalement dans leurs objectifs, leurs scénarios d'application, leurs principes algorithmiques, leur échelle de modèle et leurs méthodes de pré-formation. Dans les applications pratiques, il est très important de choisir un modèle approprié en fonction des exigences spécifiques de la tâche et des conditions des données.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

15 outils d'annotation d'images gratuits open source recommandés 15 outils d'annotation d'images gratuits open source recommandés Mar 28, 2024 pm 01:21 PM

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Jun 01, 2024 am 10:58 AM

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Transparent! Une analyse approfondie des principes des principaux modèles de machine learning ! Transparent! Une analyse approfondie des principes des principaux modèles de machine learning ! Apr 12, 2024 pm 05:55 PM

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

Identifier le surapprentissage et le sous-apprentissage grâce à des courbes d'apprentissage Identifier le surapprentissage et le sous-apprentissage grâce à des courbes d'apprentissage Apr 29, 2024 pm 06:50 PM

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

L'évolution de l'intelligence artificielle dans l'exploration spatiale et l'ingénierie des établissements humains L'évolution de l'intelligence artificielle dans l'exploration spatiale et l'ingénierie des établissements humains Apr 29, 2024 pm 03:25 PM

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

IA explicable : Expliquer les modèles IA/ML complexes IA explicable : Expliquer les modèles IA/ML complexes Jun 03, 2024 pm 10:08 PM

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

See all articles