Arbres boostés par dégradé et machines boostées par dégradé
Le modèle d'amplification de dégradé comprend principalement deux méthodes d'ajustement : l'arbre d'amplification de dégradé et la machine d'amplification de dégradé. L'arbre d'amplification de gradient utilise des itérations répétées pour réduire progressivement l'erreur résiduelle en entraînant une série d'arbres de décision, et obtient finalement un modèle de prédiction. La machine d'amplification de gradient présente davantage d'apprenants basés sur l'arbre d'amplification de gradient, tels que les machines de régression linéaire et de vecteurs de support, pour améliorer les performances du modèle. La combinaison de ces apprenants peut mieux capturer les relations complexes des données, améliorant ainsi la précision et la stabilité des prédictions.
Le concept et le principe de l'arbre de renforcement de gradient
L'arbre de renforcement de gradient est une méthode d'apprentissage d'ensemble qui réduit les erreurs résiduelles en entraînant de manière itérative des arbres de décision pour obtenir le modèle de prédiction final.
Le principe de l'arbre d'amplification de gradient est le suivant :
Initialiser le modèle : utiliser la valeur moyenne de la variable cible comme valeur prédite initiale.
Formation itérative : en entraînant continuellement de manière itérative une série d'arbres de décision, les résidus du modèle actuel sont ajustés pour obtenir le prochain cycle de modèle de prédiction.
Mettre à jour le modèle : comparez les résultats de prédiction du modèle actuel avec la vraie valeur pour obtenir le résidu, puis utilisez le résidu comme variable cible pour le prochain cycle d'entraînement afin de poursuivre l'entraînement itératif.
Terminer l'itération : lorsque le nombre d'itérations prédéfini est atteint ou que la fonction objectif a convergé, arrêtez l'itération et obtenez le modèle de prédiction final.
La clé de l'arbre d'amélioration du gradient est d'utiliser la méthode de descente de gradient pour ajuster les paramètres du modèle à chaque itération afin de minimiser l'erreur résiduelle sous le modèle actuel. Par conséquent, les arbres d’amplification de gradient peuvent gérer efficacement les relations non linéaires et les données non stationnaires, tout en évitant les problèmes de surajustement et de sous-ajustement.
Gradient Boosting Machine est une méthode d'apprentissage intégrée et une extension de l'arbre d'amplification de gradient. Elle peut non seulement utiliser des arbres de décision comme apprenants de base, mais également utiliser d'autres types d'algorithmes d'apprentissage automatique, tels que la régression linéaire, prendre en charge les machines vectorielles, etc. .
Le concept et le principe de la machine de boosting de gradient
Le principe de la machine de boosting de gradient est similaire à celui de l'arbre de boosting de gradient, mais à chaque itération, la machine de boosting de gradient peut utiliser différents apprenants pour s'adapter aux résidus du modèle. Plus précisément, le principe de la machine à booster de gradient est le suivant :
Initialiser le modèle : utiliser la valeur moyenne de la variable cible comme valeur prédite initiale.
Formation itérative : en formant de manière itérative continue une série d'apprenants de base, les résidus du modèle actuel sont ajustés pour obtenir le prochain cycle de modèle de prédiction.
Mettre à jour le modèle : comparez les résultats de prédiction du modèle actuel avec la vraie valeur pour obtenir le résidu, puis utilisez le résidu comme variable cible pour le prochain cycle d'entraînement afin de poursuivre l'entraînement itératif.
Terminer l'itération : lorsque le nombre d'itérations prédéfini est atteint ou que la fonction objectif a convergé, arrêtez l'itération et obtenez le modèle de prédiction final.
La clé de la machine à booster de gradient est de sélectionner l'apprenant de base optimal pour s'adapter aux résidus du modèle actuel à chaque itération. Par conséquent, les machines d’augmentation de gradient peuvent gérer différents types de données et de problèmes de manière plus flexible et disposent de fortes capacités de généralisation.
La différence entre les arbres de boosting de gradient et les machines de boosting de gradient
Les arbres de boosting de gradient et les machines de boosting de gradient sont tous deux des méthodes d'apprentissage intégrées basées sur l'algorithme de boosting de gradient. Leur principale différence réside dans le type et le nombre d'apprenants de base.
L'arbre d'amélioration des gradients utilise l'arbre de décision comme apprenant de base, et chaque itération entraîne un arbre de décision pour s'adapter au résidu du modèle actuel. L'avantage des arbres d'amplification de gradient est qu'ils sont faciles à mettre en œuvre et à expliquer, et qu'ils peuvent gérer des relations non linéaires et des données non stationnaires. Cependant, ils peuvent être soumis aux limitations de l'arbre de décision lui-même, telles que le surajustement et d'autres problèmes.
La machine d'amplification de gradient peut utiliser différents types d'algorithmes d'apprentissage automatique comme apprenants de base, tels que la régression linéaire, la machine à vecteurs de support, etc. Chaque cycle d'itération forme un nouvel apprenant de base pour s'adapter aux résidus du modèle actuel. L'avantage de la machine d'amplification de gradient est qu'elle peut gérer différents types de données et de problèmes de manière plus flexible et possède une forte capacité de généralisation. Cependant, par rapport à l'arbre d'amplification de gradient, elle peut nécessiter plus de ressources informatiques et une mise en œuvre plus complexe.
Par conséquent, l'utilisation d'un arbre d'amplification de dégradé ou d'une machine d'amplification de dégradé doit être choisie en fonction du problème spécifique.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
