Introduction à l'apprentissage profond bayésien
Le deep learning bayésien est une méthode qui combine les statistiques bayésiennes et les techniques de deep learning. Il vise à résoudre les problèmes existants dans l’apprentissage profond, tels que le surapprentissage, l’incertitude des paramètres et l’insuffisance des données. Cet article présentera en détail les principes, les applications et les algorithmes de l’apprentissage profond bayésien.
1. Principe
Les modèles d'apprentissage profond conventionnels utilisent principalement la méthode d'estimation du maximum de vraisemblance pour estimer les paramètres, c'est-à-dire pour trouver les valeurs optimales des paramètres en maximisant la fonction de vraisemblance sur l'ensemble de données d'entraînement. Cependant, cette méthode ne peut pas fournir de quantification de l’incertitude sur les paramètres, ni traiter efficacement des problèmes tels que le surajustement. En revanche, l'apprentissage profond bayésien adopte une approche bayésienne pour modéliser les paramètres du modèle, permettant de quantifier l'incertitude des paramètres et d'obtenir la confiance du modèle. En introduisant une distribution de probabilité a priori, l'apprentissage profond bayésien peut mettre à jour et estimer les paramètres en calculant une distribution de probabilité a posteriori, obtenant ainsi des résultats plus précis et plus fiables. Cette méthode fournit non seulement des mesures d'incertitude sur les paramètres, mais résout également efficacement le problème de surajustement et offre plus de flexibilité et d'interprétabilité pour la sélection de modèle et l'inférence d'incertitude. L'émergence de l'apprentissage profond bayésien a amené
au domaine de l'apprentissage profond. L'apprentissage profond bayésien combine la distribution préalable des paramètres du modèle et la fonction de vraisemblance des données d'entraînement pour calculer la distribution postérieure des paramètres afin d'obtenir la confiance du modèle. niveau. Dans la phase d'inférence, la distribution des prédictions du modèle est calculée via la distribution a posteriori, quantifiant l'incertitude du modèle. Pendant la phase d'entraînement, les estimations des paramètres sont obtenues en maximisant la distribution postérieure. Différente de l’estimation ponctuelle traditionnelle, l’estimation des paramètres dans l’apprentissage profond bayésien est une distribution qui peut refléter l’incertitude des paramètres. Cette méthode peut représenter avec plus de précision la confiance du modèle et fournir des résultats de prédiction plus fiables.
2. Applications
L'apprentissage profond bayésien a été appliqué dans de nombreux domaines. Voici quelques applications typiques.
1. Classification d'images
L'application de l'apprentissage profond bayésien à la classification d'images a reçu une large attention. Les modèles d'apprentissage profond traditionnels sont sujets au surajustement lorsqu'ils traitent de petits échantillons, tandis que l'apprentissage profond bayésien peut réduire le problème de surajustement du modèle en introduisant une distribution préalable. Dans le même temps, l’apprentissage profond bayésien peut quantifier la confiance du modèle, afin que des décisions plus fiables puissent être prises lorsque le modèle est incertain.
2. Traitement du langage naturel
L'apprentissage profond bayésien est également largement utilisé dans le traitement du langage naturel. Par exemple, l’apprentissage profond bayésien peut être utilisé pour améliorer des tâches telles que la traduction automatique, la classification de textes, l’analyse des sentiments, etc. En introduisant la distribution préalable et la distribution postérieure, l'apprentissage profond bayésien peut mieux gérer les problèmes d'incertitude et d'ambiguïté existant dans les données linguistiques.
3. Apprentissage par renforcement
L'apprentissage profond bayésien est également utilisé dans l'apprentissage par renforcement. L'apprentissage par renforcement est une méthode permettant d'apprendre à prendre les meilleures décisions par essais et erreurs. L'apprentissage profond bayésien peut être utilisé pour modéliser le problème d'incertitude dans l'apprentissage par renforcement, résolvant ainsi mieux le dilemme exploration-exploitation dans l'apprentissage par renforcement.
3. Algorithme
Il existe deux algorithmes principaux pour l'apprentissage profond bayésien : l'inférence variationnelle et la méthode de Monte Carlo par chaîne de Markov (MCMC).
1. Inférence variationnelle
L'inférence variationnelle est une méthode pour résoudre l'apprentissage profond bayésien en approchant la distribution postérieure. L'inférence variationnelle décompose la distribution a posteriori en une famille de distribution traitable, puis trouve la distribution la plus proche de la distribution a posteriori dans cette famille de distribution. L'avantage de l'inférence variationnelle est qu'elle est rapide dans le calcul, mais une certaine précision peut être perdue en raison de l'utilisation de distributions a posteriori approximatives.
2. Méthode Markov Chain Monte Carlo (MCMC)
La méthode MCMC est une méthode qui simule la distribution a posteriori par échantillonnage aléatoire. La méthode MCMC construit une chaîne de Markov de telle sorte que la distribution stationnaire de la chaîne soit la distribution postérieure. Cette chaîne de Markov est ensuite simulée par échantillonnage pour obtenir une approximation de la distribution a posteriori. L'avantage de la méthode MCMC est qu'elle permet d'obtenir une distribution a posteriori précise, mais la vitesse de calcul est lente.
En plus des deux méthodes ci-dessus, il existe d'autres algorithmes bayésiens d'apprentissage profond, tels que l'échantillonnage de Gibbs, l'inférence variationnelle par boîte noire, etc.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

Le potentiel d'application du langage Go dans le domaine de l'apprentissage automatique est énorme. Ses avantages sont les suivants : Concurrence : il prend en charge la programmation parallèle et convient aux opérations intensives en calcul dans les tâches d'apprentissage automatique. Efficacité : les fonctionnalités du garbage collector et du langage garantissent l’efficacité du code, même lors du traitement de grands ensembles de données. Facilité d'utilisation : la syntaxe est concise, ce qui facilite l'apprentissage et l'écriture d'applications d'apprentissage automatique.

MetaFAIR s'est associé à Harvard pour fournir un nouveau cadre de recherche permettant d'optimiser le biais de données généré lors de l'apprentissage automatique à grande échelle. On sait que la formation de grands modèles de langage prend souvent des mois et utilise des centaines, voire des milliers de GPU. En prenant comme exemple le modèle LLaMA270B, sa formation nécessite un total de 1 720 320 heures GPU. La formation de grands modèles présente des défis systémiques uniques en raison de l’ampleur et de la complexité de ces charges de travail. Récemment, de nombreuses institutions ont signalé une instabilité dans le processus de formation lors de la formation des modèles d'IA générative SOTA. Elles apparaissent généralement sous la forme de pics de pertes. Par exemple, le modèle PaLM de Google a connu jusqu'à 20 pics de pertes au cours du processus de formation. Le biais numérique est à l'origine de cette imprécision de la formation,
