


L'interaction entre l'apprentissage profond et les réseaux de neurones
Les réseaux de neurones et l'apprentissage profond sont étroitement liés, mais différents, comme les deux faces d'une médaille.
Réseau neuronal
Un réseau neuronal est similaire au cerveau humain, qui se compose de nombreux neurones de traitement hautement interconnectés. Ces neurones travaillent ensemble pour résoudre des problèmes complexes d’apprentissage automatique de manière très sensible, ce qui nous permet de réaliser des avancées révolutionnaires.
L'unité informatique de base d'un réseau neuronal est le neurone, qui reçoit les entrées et les traite via plusieurs neurones dans plusieurs couches cachées, et génère finalement une sortie via la couche de sortie. En apprentissage automatique, le modèle commun des réseaux de neurones s'inspire des neurones biologiques. Ce modèle fait référence à un réseau de neurones monocouche avec une seule sortie.
Les réseaux de neurones réalisent la convergence grâce à la propagation vers l'avant, la perte de calcul, la rétro-propagation, la descente de gradient, etc. C'est ce qu'on appelle un réseau de neurones artificiels (ANN) et constitue la base de l'apprentissage profond.
Deep Learning
Le deep learning est un algorithme qui utilise des réseaux de neurones profonds pour entraîner des données complexes et prédire la sortie à travers plusieurs couches et nœuds cachés. Cet algorithme peut imiter le fonctionnement du cerveau humain.
L'apprentissage automatique traditionnel peut faire des prédictions en complétant l'ingénierie des fonctionnalités à l'avance lors du traitement des données structurées, tandis que l'apprentissage profond effectue à la fois l'ingénierie manuelle des fonctionnalités et l'auto-apprentissage. En conséquence, l’apprentissage profond est plus efficace et peut s’améliorer au fil du temps.
Le deep learning joue un rôle central dans la recherche à l’ère numérique d’aujourd’hui. Cependant, pour réaliser pleinement l’apprentissage profond, les réseaux de neurones sont indispensables. Ces algorithmes sont calqués sur le cerveau et le système nerveux humains, apportant une aide considérable au processus d’apprentissage profond plus large. Les réseaux de neurones et l’apprentissage profond sont donc indissociables.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

Près de 20 ans se sont écoulés depuis que le concept d'apprentissage profond a été proposé en 2006. L'apprentissage profond, en tant que révolution dans le domaine de l'intelligence artificielle, a donné naissance à de nombreux algorithmes influents. Alors, selon vous, quels sont les 10 meilleurs algorithmes pour l’apprentissage profond ? Voici les meilleurs algorithmes d’apprentissage profond, à mon avis. Ils occupent tous une position importante en termes d’innovation, de valeur d’application et d’influence. 1. Contexte du réseau neuronal profond (DNN) : Le réseau neuronal profond (DNN), également appelé perceptron multicouche, est l'algorithme d'apprentissage profond le plus courant lorsqu'il a été inventé pour la première fois, jusqu'à récemment en raison du goulot d'étranglement de la puissance de calcul. années, puissance de calcul, La percée est venue avec l'explosion des données. DNN est un modèle de réseau neuronal qui contient plusieurs couches cachées. Dans ce modèle, chaque couche transmet l'entrée à la couche suivante et

Convolutional Neural Network (CNN) et Transformer sont deux modèles d'apprentissage en profondeur différents qui ont montré d'excellentes performances sur différentes tâches. CNN est principalement utilisé pour les tâches de vision par ordinateur telles que la classification d'images, la détection de cibles et la segmentation d'images. Il extrait les caractéristiques locales de l'image via des opérations de convolution et effectue une réduction de dimensionnalité des caractéristiques et une invariance spatiale via des opérations de pooling. En revanche, Transformer est principalement utilisé pour les tâches de traitement du langage naturel (NLP) telles que la traduction automatique, la classification de texte et la reconnaissance vocale. Il utilise un mécanisme d'auto-attention pour modéliser les dépendances dans des séquences, évitant ainsi le calcul séquentiel dans les réseaux neuronaux récurrents traditionnels. Bien que ces deux modèles soient utilisés pour des tâches différentes, ils présentent des similitudes dans la modélisation des séquences.

Le modèle LSTM bidirectionnel est un réseau neuronal utilisé pour la classification de texte. Vous trouverez ci-dessous un exemple simple montrant comment utiliser le LSTM bidirectionnel pour les tâches de classification de texte. Tout d'abord, nous devons importer les bibliothèques et modules requis : importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Le réseau neuronal convolutif causal est un réseau neuronal convolutif spécial conçu pour les problèmes de causalité dans les données de séries chronologiques. Par rapport aux réseaux de neurones convolutifs conventionnels, les réseaux de neurones convolutifs causals présentent des avantages uniques en ce qu'ils conservent la relation causale des séries chronologiques et sont largement utilisés dans la prédiction et l'analyse des données de séries chronologiques. L'idée centrale du réseau neuronal convolutionnel causal est d'introduire la causalité dans l'opération de convolution. Les réseaux neuronaux convolutifs traditionnels peuvent percevoir simultanément les données avant et après le point temporel actuel, mais dans la prévision des séries chronologiques, cela peut entraîner des problèmes de fuite d'informations. Parce que le résultat de la prédiction à l’heure actuelle sera affecté par les données à l’heure future. Le réseau neuronal convolutionnel causal résout ce problème. Il ne peut percevoir que le point temporel actuel et les données précédentes, mais ne peut pas percevoir les données futures.

Le réseau neuronal siamois est une structure de réseau neuronal artificiel unique. Il se compose de deux réseaux de neurones identiques partageant les mêmes paramètres et poids. Dans le même temps, les deux réseaux partagent également les mêmes données d’entrée. Cette conception a été inspirée par des jumeaux, car les deux réseaux de neurones sont structurellement identiques. Le principe du réseau neuronal siamois est d'accomplir des tâches spécifiques, telles que la correspondance d'images, la correspondance de textes et la reconnaissance de visages, en comparant la similitude ou la distance entre deux données d'entrée. Pendant la formation, le réseau tente de mapper des données similaires vers des régions adjacentes et des données différentes vers des régions distantes. De cette manière, le réseau peut apprendre à classer ou à faire correspondre différentes données pour obtenir des résultats correspondants.

Editeur | Radis Skin Depuis la sortie du puissant AlphaFold2 en 2021, les scientifiques utilisent des modèles de prédiction de la structure des protéines pour cartographier diverses structures protéiques dans les cellules, découvrir des médicaments et dresser une « carte cosmique » de chaque interaction protéique connue. Tout à l'heure, Google DeepMind a publié le modèle AlphaFold3, capable d'effectuer des prédictions de structure conjointe pour des complexes comprenant des protéines, des acides nucléiques, de petites molécules, des ions et des résidus modifiés. La précision d’AlphaFold3 a été considérablement améliorée par rapport à de nombreux outils dédiés dans le passé (interaction protéine-ligand, interaction protéine-acide nucléique, prédiction anticorps-antigène). Cela montre qu’au sein d’un cadre unique et unifié d’apprentissage profond, il est possible de réaliser
