Maison Périphériques technologiques IA La différence entre les modèles de génération de diffusion discrète et continue

La différence entre les modèles de génération de diffusion discrète et continue

Jan 23, 2024 pm 06:03 PM
机器学习 深度学习

La différence entre les modèles de génération de diffusion discrète et continue

Le modèle de génération de diffusion (DGM) est un modèle de génération de données basé sur l'apprentissage en profondeur qui utilise les principes physiques du processus de diffusion pour générer des données. DGM traite les données comme un processus dans lequel un état initial évolue progressivement à travers une série d'étapes de diffusion. Ce modèle a été largement utilisé dans les tâches de génération de données dans plusieurs domaines tels que les images et le texte, et possède des capacités de qualité de génération et de généralisation élevées. En apprenant le processus de diffusion des données, DGM peut générer des échantillons de données réalistes et diversifiés, contribuant ainsi à améliorer les capacités de génération du modèle et à élargir les scénarios d'application.

Discret et continu sont des concepts qui décrivent les types de données. Dans les données discrètes, chaque point de données est discret et ne peut prendre que certaines valeurs spécifiques, telles que des entiers ou des valeurs booléennes. Dans les données continues, les points de données peuvent prendre un nombre infini de valeurs, telles que des valeurs réelles. Dans DGM, les concepts de discret et de continu sont également utilisés pour décrire les types de données générées. Lors de la génération de données discrètes, nous pouvons utiliser des distributions de probabilité discrètes pour décrire la probabilité de chaque valeur. Pour les données continues, nous pouvons utiliser la fonction de densité de probabilité pour décrire la distribution des points de données. Par conséquent, les concepts de discret et de continu jouent un rôle important dans les modèles de génération de données.

Discret et continu dans DGM sont utilisés pour décrire le type de distribution des données générées. La distribution des données générées par le DGM discret est discrète, comme les images binaires ou les séquences de texte. La distribution des données générées par le DGM continu est continue, comme les images en niveaux de gris ou les formes d'onde audio.

La différence la plus évidente entre le DGM discret et continu est le type de distribution qui génère les données. Dans le DGM discret, les points de données générés ne peuvent prendre qu'un nombre limité de valeurs et doivent être modélisés à l'aide de distributions discrètes, telles que la distribution de Bernoulli ou la distribution polynomiale. La modélisation de distributions discrètes est souvent mise en œuvre à l'aide de convolutions discrètes ou de réseaux de neurones récurrents (RNN). Dans le DGM continu, les points de données générés peuvent prendre n'importe quelle valeur, ils peuvent donc être modélisés à l'aide de distributions continues, telles que la distribution gaussienne ou la distribution uniforme. Les distributions continues sont souvent modélisées à l'aide de méthodes telles que les auto-encodeurs variationnels (VAE) ou les réseaux contradictoires génératifs (GAN). En résumé, la différence significative entre le DGM discret et le DGM continu réside dans la plage de valeurs des points de données et dans le choix de la méthode de modélisation de distribution.

En DGM continu, les points de données générés peuvent prendre un nombre illimité de valeurs réelles. Par conséquent, nous devons modéliser en utilisant une distribution continue telle que la distribution gaussienne ou gamma. La modélisation de telles distributions continues implique souvent l'utilisation de convolutions continues ou d'auto-encodeurs variationnels (VAE).

De plus, il existe d'autres différences entre les DGM discrets et continus. Premièrement, le DGM discret nécessite généralement davantage d'étapes de génération pour générer la même taille de données, puisqu'un seul point de données discret peut être généré à chaque étape. Deuxièmement, étant donné que le DGM discret utilise des distributions discrètes pour modéliser, il peut y avoir des situations dans lesquelles le modèle ne peut pas générer certains points de données spécifiques lors de la génération des données, ce que l'on appelle le « phénomène manquant ». Dans le DGM continu, puisque la distribution continue est utilisée pour la modélisation, le modèle peut générer n'importe quel point de données à valeur réelle, de sorte qu'il n'y aura aucun phénomène manquant.

Dans les applications pratiques, les DGM discrets et continus peuvent choisir différents modèles pour générer des données en fonction de différents types de données. Par exemple, des données discrètes telles que des images binaires ou des séquences de texte peuvent être générées à l'aide d'un DGM discret, tandis que des données continues telles que des images en niveaux de gris ou des formes d'onde audio peuvent être générées à l'aide d'un DGM continu ; De plus, les DGM discrets et continus peuvent également être combinés, par exemple en utilisant un DGM discret pour générer une séquence de texte, puis en utilisant un DGM continu pour convertir la séquence de texte en l'image correspondante. Cette approche combinée peut améliorer dans une certaine mesure la qualité et la diversité des données générées.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Cet article vous amènera à comprendre SHAP : explication du modèle pour l'apprentissage automatique Jun 01, 2024 am 10:58 AM

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Identifier le surapprentissage et le sous-apprentissage grâce à des courbes d'apprentissage Identifier le surapprentissage et le sous-apprentissage grâce à des courbes d'apprentissage Apr 29, 2024 pm 06:50 PM

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées May 30, 2024 am 09:35 AM

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

L'évolution de l'intelligence artificielle dans l'exploration spatiale et l'ingénierie des établissements humains L'évolution de l'intelligence artificielle dans l'exploration spatiale et l'ingénierie des établissements humains Apr 29, 2024 pm 03:25 PM

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

IA explicable : Expliquer les modèles IA/ML complexes IA explicable : Expliquer les modèles IA/ML complexes Jun 03, 2024 pm 10:08 PM

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Flash Attention est-il stable ? Meta et Harvard ont constaté que les écarts de poids de leur modèle fluctuaient de plusieurs ordres de grandeur. Flash Attention est-il stable ? Meta et Harvard ont constaté que les écarts de poids de leur modèle fluctuaient de plusieurs ordres de grandeur. May 30, 2024 pm 01:24 PM

MetaFAIR s'est associé à Harvard pour fournir un nouveau cadre de recherche permettant d'optimiser le biais de données généré lors de l'apprentissage automatique à grande échelle. On sait que la formation de grands modèles de langage prend souvent des mois et utilise des centaines, voire des milliers de GPU. En prenant comme exemple le modèle LLaMA270B, sa formation nécessite un total de 1 720 320 heures GPU. La formation de grands modèles présente des défis systémiques uniques en raison de l’ampleur et de la complexité de ces charges de travail. Récemment, de nombreuses institutions ont signalé une instabilité dans le processus de formation lors de la formation des modèles d'IA générative SOTA. Elles apparaissent généralement sous la forme de pics de pertes. Par exemple, le modèle PaLM de Google a connu jusqu'à 20 pics de pertes au cours du processus de formation. Le biais numérique est à l'origine de cette imprécision de la formation,

See all articles