Table des matières
Caractéristiques
Maison Périphériques technologiques IA Construction et caractéristiques du modèle Conformer

Construction et caractéristiques du modèle Conformer

Jan 24, 2024 am 08:09 AM
深度学习 réseau de neurones artificiels

Construction et caractéristiques du modèle Conformer

Conformer est un modèle de séquence basé sur le mécanisme d'auto-attention. Il a obtenu d'excellentes performances dans des tâches telles que la reconnaissance vocale, la modélisation du langage et la traduction automatique. Semblable au modèle Transformer, la structure du modèle Conformer comprend également une couche d'auto-attention multi-têtes et une couche de réseau neuronal à rétroaction. Cependant, Conformer a été amélioré sous certains aspects pour le rendre plus adapté aux tâches de modélisation de séquences. Une amélioration du modèle Conformer est l'introduction d'une couche de réseau neuronal convolutif pour capturer des informations contextuelles locales. L'introduction de cette structure permet au modèle de mieux gérer les caractéristiques locales dans la séquence et améliore la capacité de généralisation du modèle. De plus, Conformer introduit également une nouvelle méthode de codage de position appelée codage de position convolutionnel séparable en profondeur. Par rapport aux méthodes traditionnelles de codage de position, le codage de position par convolution séparable en profondeur peut mieux capturer les informations de position dans la séquence et améliorer la capacité de modélisation de l'ordre des séquences du modèle. En bref, la structure de base du modèle

Conformer se compose de plusieurs blocs Conformer. Chaque bloc Conformer contient deux sous-modules : un module d'auto-attention multi-têtes et un module de convolution. Le module d'auto-attention multi-têtes est utilisé pour capturer les informations interactives entre différentes positions dans la séquence et améliorer la représentation des positions importantes en calculant les poids d'attention. Le module de convolution est utilisé pour extraire les caractéristiques locales de la séquence et capturer des informations de contexte local via des opérations de convolution. Ces deux sous-modules sont combinés l'un avec l'autre pour permettre au modèle Conformer de prendre en compte à la fois les informations globales et locales pour modéliser efficacement les données de séquence.

Le module d'auto-attention multi-têtes est implémenté en améliorant le mécanisme d'attention du modèle Transformer. Les améliorations spécifiques incluent le codage de position relative et les méthodes d'interaction d'informations indépendantes de la position. Le codage de position relative permet de mieux gérer les informations de position dans une séquence, tandis que l'interaction d'informations indépendante de la position convient au traitement de longues séquences. Ces améliorations permettent au module d'auto-attention multi-têtes d'avoir de meilleures performances et un meilleur effet lors du traitement des données de séquence.

Le module de convolution se compose de couches convolutives séparables en profondeur et de connexions résiduelles, ce qui non seulement réduit le nombre de paramètres, mais accélère également la formation et l'inférence. Les connexions résiduelles atténuent les problèmes de dégradation du modèle et accélèrent la convergence.

Caractéristiques

Par rapport aux modèles de séquence traditionnels, le modèle Conformer présente les caractéristiques suivantes:

1. De meilleures capacités de modélisation de séquence

Le modèle Conformer adopte un mécanisme d'auto-attention multi-têtes, Les informations d'interaction entre différentes positions dans la séquence peuvent être mieux capturées. Dans le même temps, il utilise également un module de convolution pour mieux effectuer l'extraction de fonctionnalités locales. Ces caractéristiques permettent au modèle Conformer d'avoir de meilleures performances dans les tâches de modélisation de séquences.

2. Efficacité supérieure du modèle

Le modèle Conformer utilise des couches convolutionnelles séparables en profondeur et des connexions résiduelles, ce qui peut réduire efficacement le nombre de paramètres du modèle et accélérer le processus de formation et d'inférence du modèle. Ces caractéristiques rendent le modèle Conformer plus efficace dans les applications pratiques.

3. Meilleure capacité de généralisation

Le modèle Conformer utilise des méthodes de codage de position relative et d'interaction d'informations indépendantes de la position, qui peuvent mieux gérer de longues séquences et ont une meilleure capacité de généralisation. Ces caractéristiques rendent le modèle Conformer plus adaptable lorsqu'il s'agit de tâches complexes.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées May 30, 2024 am 09:35 AM

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Mar 02, 2024 am 11:19 AM

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

Super fort! Top 10 des algorithmes de deep learning ! Super fort! Top 10 des algorithmes de deep learning ! Mar 15, 2024 pm 03:46 PM

Près de 20 ans se sont écoulés depuis que le concept d'apprentissage profond a été proposé en 2006. L'apprentissage profond, en tant que révolution dans le domaine de l'intelligence artificielle, a donné naissance à de nombreux algorithmes influents. Alors, selon vous, quels sont les 10 meilleurs algorithmes pour l’apprentissage profond ? Voici les meilleurs algorithmes d’apprentissage profond, à mon avis. Ils occupent tous une position importante en termes d’innovation, de valeur d’application et d’influence. 1. Contexte du réseau neuronal profond (DNN) : Le réseau neuronal profond (DNN), également appelé perceptron multicouche, est l'algorithme d'apprentissage profond le plus courant lorsqu'il a été inventé pour la première fois, jusqu'à récemment en raison du goulot d'étranglement de la puissance de calcul. années, puissance de calcul, La percée est venue avec l'explosion des données. DNN est un modèle de réseau neuronal qui contient plusieurs couches cachées. Dans ce modèle, chaque couche transmet l'entrée à la couche suivante et

Comment utiliser les modèles hybrides CNN et Transformer pour améliorer les performances Comment utiliser les modèles hybrides CNN et Transformer pour améliorer les performances Jan 24, 2024 am 10:33 AM

Convolutional Neural Network (CNN) et Transformer sont deux modèles d'apprentissage en profondeur différents qui ont montré d'excellentes performances sur différentes tâches. CNN est principalement utilisé pour les tâches de vision par ordinateur telles que la classification d'images, la détection de cibles et la segmentation d'images. Il extrait les caractéristiques locales de l'image via des opérations de convolution et effectue une réduction de dimensionnalité des caractéristiques et une invariance spatiale via des opérations de pooling. En revanche, Transformer est principalement utilisé pour les tâches de traitement du langage naturel (NLP) telles que la traduction automatique, la classification de texte et la reconnaissance vocale. Il utilise un mécanisme d'auto-attention pour modéliser les dépendances dans des séquences, évitant ainsi le calcul séquentiel dans les réseaux neuronaux récurrents traditionnels. Bien que ces deux modèles soient utilisés pour des tâches différentes, ils présentent des similitudes dans la modélisation des séquences.

Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Jan 24, 2024 am 10:36 AM

Le modèle LSTM bidirectionnel est un réseau neuronal utilisé pour la classification de texte. Vous trouverez ci-dessous un exemple simple montrant comment utiliser le LSTM bidirectionnel pour les tâches de classification de texte. Tout d'abord, nous devons importer les bibliothèques et modules requis : importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

AlphaFold 3 est lancé, prédisant de manière exhaustive les interactions et les structures des protéines et de toutes les molécules de la vie, avec une précision bien plus grande que jamais AlphaFold 3 est lancé, prédisant de manière exhaustive les interactions et les structures des protéines et de toutes les molécules de la vie, avec une précision bien plus grande que jamais Jul 16, 2024 am 12:08 AM

Editeur | Radis Skin Depuis la sortie du puissant AlphaFold2 en 2021, les scientifiques utilisent des modèles de prédiction de la structure des protéines pour cartographier diverses structures protéiques dans les cellules, découvrir des médicaments et dresser une « carte cosmique » de chaque interaction protéique connue. Tout à l'heure, Google DeepMind a publié le modèle AlphaFold3, capable d'effectuer des prédictions de structure conjointe pour des complexes comprenant des protéines, des acides nucléiques, de petites molécules, des ions et des résidus modifiés. La précision d’AlphaFold3 a été considérablement améliorée par rapport à de nombreux outils dédiés dans le passé (interaction protéine-ligand, interaction protéine-acide nucléique, prédiction anticorps-antigène). Cela montre qu’au sein d’un cadre unique et unifié d’apprentissage profond, il est possible de réaliser

Débruitage d'image à l'aide de réseaux de neurones convolutifs Débruitage d'image à l'aide de réseaux de neurones convolutifs Jan 23, 2024 pm 11:48 PM

Les réseaux de neurones convolutifs fonctionnent bien dans les tâches de débruitage d'images. Il utilise les filtres appris pour filtrer le bruit et restaurer ainsi l'image originale. Cet article présente en détail la méthode de débruitage d'image basée sur un réseau neuronal convolutif. 1. Présentation du réseau neuronal convolutif Le réseau neuronal convolutif est un algorithme d'apprentissage en profondeur qui utilise une combinaison de plusieurs couches convolutives, des couches de regroupement et des couches entièrement connectées pour apprendre et classer les caractéristiques de l'image. Dans la couche convolutive, les caractéristiques locales de l'image sont extraites via des opérations de convolution, capturant ainsi la corrélation spatiale dans l'image. La couche de pooling réduit la quantité de calcul en réduisant la dimension des fonctionnalités et conserve les principales fonctionnalités. La couche entièrement connectée est responsable du mappage des fonctionnalités et des étiquettes apprises pour mettre en œuvre la classification des images ou d'autres tâches. La conception de cette structure de réseau rend les réseaux de neurones convolutifs utiles dans le traitement et la reconnaissance d'images.

Réseau de neurones jumeaux : analyse des principes et des applications Réseau de neurones jumeaux : analyse des principes et des applications Jan 24, 2024 pm 04:18 PM

Le réseau neuronal siamois est une structure de réseau neuronal artificiel unique. Il se compose de deux réseaux de neurones identiques partageant les mêmes paramètres et poids. Dans le même temps, les deux réseaux partagent également les mêmes données d’entrée. Cette conception a été inspirée par des jumeaux, car les deux réseaux de neurones sont structurellement identiques. Le principe du réseau neuronal siamois est d'accomplir des tâches spécifiques, telles que la correspondance d'images, la correspondance de textes et la reconnaissance de visages, en comparant la similitude ou la distance entre deux données d'entrée. Pendant la formation, le réseau tente de mapper des données similaires vers des régions adjacentes et des données différentes vers des régions distantes. De cette manière, le réseau peut apprendre à classer ou à faire correspondre différentes données pour obtenir des résultats correspondants.

See all articles