Maison développement back-end Tutoriel Python Comment utiliser Pandas pour extraire des données qui remplissent les conditions

Comment utiliser Pandas pour extraire des données qui remplissent les conditions

Jan 24, 2024 am 10:37 AM
filtre pandas Données admissibles Utiliser des pandas

Comment utiliser Pandas pour extraire des données qui remplissent les conditions

Comment utiliser Pandas pour filtrer les données qualifiées

Pandas est une puissante bibliothèque d'analyse de données en Python, qui fournit de riches fonctions de traitement et d'exploitation des données. Dans le processus réel d'analyse et de traitement des données, nous devons souvent filtrer les données pour trouver des données qui répondent à des conditions spécifiques. Cet article vous expliquera comment utiliser Pandas pour le filtrage des données et fournira des exemples de code spécifiques.

1. Importer la bibliothèque Pandas

Avant d'utiliser Pandas, nous devons d'abord importer les bibliothèques pertinentes. Vous pouvez utiliser la commande suivante pour importer la bibliothèque Pandas :

importer des pandas en tant que pd

2. Créer un bloc de données

Avant de filtrer les données, nous devons d'abord créer un bloc de données. La trame de données est une structure de données couramment utilisée dans Pandas, similaire aux tableaux dans Excel, qui peut facilement stocker et traiter des données. Voici un exemple de code pour créer un bloc de données simple :

data = {'Name' : ['Zhang San', 'Li Si', 'Wang Wu', 'Zhao Liu'],

    'Age': [25, 30, 35, 40],
    'Gender': ['男', '女', '男', '女'],
    'Salary': [5000, 6000, 7000, 8000]}
Copier après la connexion

df = pd . DataFrame(data)

3. Filtrer les données en fonction des conditions

Dans Pandas, nous pouvons utiliser certaines méthodes pour filtrer les données en fonction des conditions. Voici plusieurs méthodes couramment utilisées :

  1. méthode loc

la méthode loc peut filtrer les données en fonction des étiquettes de lignes et de colonnes. Voici un exemple de code qui utilise la méthode loc pour filtrer les données de plus de 30 ans :

filtered_data = df.loc[df['Age'] > 30]

  1. méthode iloc

la méthode iloc peut être basé sur la ligne et la colonne, l'index effectue un filtrage des données. Voici un exemple de code qui utilise la méthode iloc pour filtrer les données de la ligne 3 :

filtered_data = df.iloc[2]

  1. Filtrage conditionnel

En plus des méthodes ci-dessus, nous pouvons également utiliser des expressions conditionnelles pour filtrer les données. Voici un exemple de code utilisant le filtrage conditionnel :

filtered_data = df[df['Gender'] == 'Male' & df['Salary'] > 6000]

Quatre Afficher les résultats du filtrage

Après le filtrage. les données Après le filtrage, nous pouvons utiliser la méthode d'impression pour afficher les résultats filtrés. Voici un exemple de code pour afficher des résultats filtrés :

print(filtered_data)

Avec l'exemple de code ci-dessus, vous pouvez facilement utiliser Pandas pour filtrer les données qui répondent aux critères. Dans l'analyse et le traitement réels des données, ces fonctions de Pandas vous feront économiser beaucoup de temps et d'énergie et vous aideront à trouver rapidement et précisément les données dont vous avez besoin.

Résumé : cet article présente les méthodes de base d'utilisation de Pandas pour le filtrage des données, y compris le filtrage basé sur des étiquettes et des index, et le filtrage à l'aide d'expressions conditionnelles. J'espère que ces contenus pourront vous aider à mieux utiliser Pandas pour l'analyse et le traitement des données. Dans des applications pratiques, vous pouvez également combiner d'autres fonctions de Pandas pour un traitement et une analyse ultérieurs des données en fonction de besoins spécifiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Quelles sont les bibliothèques Python populaires et leurs utilisations? Quelles sont les bibliothèques Python populaires et leurs utilisations? Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Que sont les expressions régulières? Que sont les expressions régulières? Mar 20, 2025 pm 06:25 PM

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Apr 01, 2025 pm 10:51 PM

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Expliquez le but des environnements virtuels dans Python. Expliquez le but des environnements virtuels dans Python. Mar 19, 2025 pm 02:27 PM

L'article traite du rôle des environnements virtuels dans Python, en se concentrant sur la gestion des dépendances du projet et l'évitement des conflits. Il détaille leur création, leur activation et leurs avantages pour améliorer la gestion de projet et réduire les problèmes de dépendance.

Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Apr 01, 2025 pm 11:18 PM

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

See all articles