


Comment utiliser Pandas pour extraire des données qui remplissent les conditions
Comment utiliser Pandas pour filtrer les données qualifiées
Pandas est une puissante bibliothèque d'analyse de données en Python, qui fournit de riches fonctions de traitement et d'exploitation des données. Dans le processus réel d'analyse et de traitement des données, nous devons souvent filtrer les données pour trouver des données qui répondent à des conditions spécifiques. Cet article vous expliquera comment utiliser Pandas pour le filtrage des données et fournira des exemples de code spécifiques.
1. Importer la bibliothèque Pandas
Avant d'utiliser Pandas, nous devons d'abord importer les bibliothèques pertinentes. Vous pouvez utiliser la commande suivante pour importer la bibliothèque Pandas :
importer des pandas en tant que pd
2. Créer un bloc de données
Avant de filtrer les données, nous devons d'abord créer un bloc de données. La trame de données est une structure de données couramment utilisée dans Pandas, similaire aux tableaux dans Excel, qui peut facilement stocker et traiter des données. Voici un exemple de code pour créer un bloc de données simple :
data = {'Name' : ['Zhang San', 'Li Si', 'Wang Wu', 'Zhao Liu'],
'Age': [25, 30, 35, 40], 'Gender': ['男', '女', '男', '女'], 'Salary': [5000, 6000, 7000, 8000]}
df = pd . DataFrame(data)
3. Filtrer les données en fonction des conditions
Dans Pandas, nous pouvons utiliser certaines méthodes pour filtrer les données en fonction des conditions. Voici plusieurs méthodes couramment utilisées :
- méthode loc
la méthode loc peut filtrer les données en fonction des étiquettes de lignes et de colonnes. Voici un exemple de code qui utilise la méthode loc pour filtrer les données de plus de 30 ans :
filtered_data = df.loc[df['Age'] > 30]
- méthode iloc
la méthode iloc peut être basé sur la ligne et la colonne, l'index effectue un filtrage des données. Voici un exemple de code qui utilise la méthode iloc pour filtrer les données de la ligne 3 :
filtered_data = df.iloc[2]
- Filtrage conditionnel
En plus des méthodes ci-dessus, nous pouvons également utiliser des expressions conditionnelles pour filtrer les données. Voici un exemple de code utilisant le filtrage conditionnel :
filtered_data = df[df['Gender'] == 'Male' & df['Salary'] > 6000]
Quatre Afficher les résultats du filtrage
Après le filtrage. les données Après le filtrage, nous pouvons utiliser la méthode d'impression pour afficher les résultats filtrés. Voici un exemple de code pour afficher des résultats filtrés :
print(filtered_data)
Avec l'exemple de code ci-dessus, vous pouvez facilement utiliser Pandas pour filtrer les données qui répondent aux critères. Dans l'analyse et le traitement réels des données, ces fonctions de Pandas vous feront économiser beaucoup de temps et d'énergie et vous aideront à trouver rapidement et précisément les données dont vous avez besoin.
Résumé : cet article présente les méthodes de base d'utilisation de Pandas pour le filtrage des données, y compris le filtrage basé sur des étiquettes et des index, et le filtrage à l'aide d'expressions conditionnelles. J'espère que ces contenus pourront vous aider à mieux utiliser Pandas pour l'analyse et le traitement des données. Dans des applications pratiques, vous pouvez également combiner d'autres fonctions de Pandas pour un traitement et une analyse ultérieurs des données en fonction de besoins spécifiques.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

L'article traite du rôle des environnements virtuels dans Python, en se concentrant sur la gestion des dépendances du projet et l'évitement des conflits. Il détaille leur création, leur activation et leurs avantages pour améliorer la gestion de projet et réduire les problèmes de dépendance.

Fastapi ...

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...
