


Comment le mécanisme d'auto-attention utilise-t-il l'échantillonnage aléatoire pour améliorer les capacités de formation et de généralisation des modèles d'intelligence artificielle ?
Le mécanisme d'auto-attention est un modèle de réseau neuronal largement utilisé dans des domaines tels que le traitement du langage naturel et la vision par ordinateur. Il capture les informations importantes dans la séquence en effectuant une agrégation pondérée sur différentes positions de la séquence d'entrée. Ce mécanisme peut apprendre automatiquement les poids à différentes positions, permettant au modèle de mieux comprendre le contexte de la séquence d'entrée. Par rapport aux mécanismes d’attention traditionnels, les mécanismes d’auto-attention peuvent mieux gérer les longues séquences et les dépendances globales. L'échantillonnage aléatoire est une méthode de sélection aléatoire d'échantillons à partir d'une distribution de probabilité. L'échantillonnage aléatoire est une technique couramment utilisée lors de la génération de données de séquence ou de l'inférence d'approximation de Monte Carlo d'un modèle. Avec l'échantillonnage aléatoire, nous pouvons générer des échantillons à partir d'une distribution de probabilité donnée et ainsi obtenir des résultats divers. Dans l'inférence approximative de Monte Carlo du modèle, l'échantillonnage aléatoire peut être utilisé pour dériver de la distribution a posteriori
Dans la formation et la généralisation des modèles d'intelligence artificielle, le mécanisme d'auto-attention et l'échantillonnage aléatoire présentent différents avantages et scénarios d'application. Le mécanisme d’auto-attention peut aider le modèle à capturer les dépendances à longue distance et à améliorer sa capacité de généralisation. Un échantillonnage aléatoire peut être utilisé pour améliorer la diversité et la créativité du modèle. La combinaison des deux peut améliorer les performances du modèle tout en conservant la diversité des modèles et les capacités de généralisation.
Tout d'abord, le mécanisme d'auto-attention joue un rôle important dans le traitement des données de séquence et peut aider le modèle à mieux capturer les dépendances entre les séquences. Dans le domaine du traitement du langage naturel, le mécanisme d’auto-attention a été largement utilisé dans des tâches telles que la modélisation linguistique, la traduction automatique et la classification de textes, et a obtenu des résultats remarquables. La principale caractéristique du mécanisme d’auto-attention est qu’il peut effectuer une agrégation pondérée sur différentes positions de la séquence d’entrée pour accorder plus d’attention aux informations importantes. Ce mécanisme permet au modèle de mieux gérer les données de séquences longues, améliorant ainsi les performances de formation et de généralisation du modèle. En accordant une attention particulière à la séquence d'entrée, le modèle peut ajuster de manière flexible le degré d'attention aux différentes parties en fonction des poids d'importance à différentes positions, permettant ainsi de mieux comprendre et représenter les informations dans la séquence. Cette capacité est très importante pour le traitement de données comportant de longues séquences telles que du texte en langage naturel, car les longues séquences contiennent souvent davantage d'informations contextuelles et de dépendances. L'introduction du mécanisme d'auto-attention permet au modèle de mieux capturer ces relations, améliorant ainsi sa capacité d'expression et ses performances. En bref, le mécanisme d'auto-attention est un outil puissant qui peut aider le modèle à mieux capturer les dépendances entre les séquences dans les tâches de traitement de données séquentielles et à améliorer la formation et la généralisation du modèle
En même temps, l'échantillonnage aléatoire peut aider Le modèle évite les problèmes de surajustement pendant le processus de formation et améliore les performances de généralisation du modèle. En apprentissage profond, des algorithmes d'optimisation tels que la descente de gradient stochastique (SGD) sont souvent utilisés pour la formation de modèles. Cependant, pendant l'entraînement, le modèle peut surajuster les données d'entraînement, ce qui entraîne de mauvaises performances sur les données de test. Pour éviter cette situation, un échantillonnage aléatoire peut être utilisé pour briser le déterminisme du modèle et augmenter la robustesse du modèle. Par exemple, pour les tâches de génération de texte, plusieurs échantillons de texte différents peuvent être générés en utilisant un échantillonnage aléatoire, augmentant ainsi l'adaptabilité du modèle à différents styles et expressions linguistiques. En outre, l'échantillonnage aléatoire peut également être utilisé pour l'inférence approximative de modèles de Monte Carlo, comme l'estimation de l'incertitude du modèle dans les réseaux neuronaux bayésiens.
Dans les applications pratiques, le mécanisme d'auto-attention et l'échantillonnage aléatoire peuvent être combinés pour améliorer encore les performances du modèle. Par exemple, dans les modèles de langage, un mécanisme d'auto-attention peut être utilisé pour capturer des informations contextuelles sur le texte, et un échantillonnage aléatoire peut être utilisé pour générer plusieurs échantillons de texte afin d'augmenter la robustesse et les capacités de généralisation du modèle. En outre, les réseaux contradictoires génératifs (GAN) basés sur un mécanisme d’auto-attention et un échantillonnage aléatoire peuvent également être utilisés pour générer des données d’images et de texte plus réalistes. Cette combinaison peut améliorer efficacement les performances du modèle et jouer un rôle important dans diverses tâches.
Ce qui suit est un exemple qui montre comment utiliser le mécanisme d'auto-attention et l'échantillonnage aléatoire pour améliorer les performances d'un modèle de traduction automatique :
1 Préparer l'ensemble de données : Préparez l'ensemble de données pour la traduction automatique. , y compris les paires de phrases dans la langue source et dans la langue cible. Des ensembles de données publiques tels que WMT, etc. peuvent être utilisés.
2. Construisez le modèle : Construisez un modèle de traduction automatique neuronale basé sur le mécanisme d'auto-attention. Le modèle doit inclure un encodeur et un décodeur, l'encodeur utilisant un mécanisme d'auto-attention pour coder les phrases en langue source, et le décodeur utilisant un mécanisme d'auto-attention et un échantillonnage aléatoire pour générer des phrases en langue cible.
3. Modèle d'entraînement : utilisez l'ensemble de données d'entraînement pour entraîner le modèle et utilisez des algorithmes d'optimisation tels que la descente de gradient stochastique (SGD) pour optimiser les paramètres du modèle. Pendant le processus de formation, le mécanisme d'auto-attention peut être utilisé pour capturer les informations contextuelles des phrases en langue source, et un échantillonnage aléatoire peut être utilisé pour générer plusieurs phrases en langue cible, augmentant ainsi la robustesse et la capacité de généralisation du modèle.
4. Testez le modèle : utilisez l'ensemble de données de test pour tester le modèle et évaluer la qualité de la traduction et les performances du modèle. Des mécanismes d’auto-attention et un échantillonnage aléatoire peuvent être utilisés pour générer plusieurs phrases différentes dans la langue cible, améliorant ainsi la précision et la fiabilité du modèle.
5. Optimiser le modèle : optimisez et ajustez le modèle en fonction des résultats des tests pour améliorer les performances et la capacité de généralisation du modèle. La profondeur et la largeur du modèle peuvent être augmentées, ou des mécanismes d'auto-attention plus complexes et des stratégies d'échantillonnage aléatoire peuvent être utilisés pour améliorer davantage le modèle.
En bref, le mécanisme d'auto-attention et l'échantillonnage aléatoire sont deux techniques très utiles dans la formation et la généralisation des modèles d'intelligence artificielle. Ils peuvent être combinés les uns avec les autres pour améliorer encore les performances et la robustesse du modèle, et ont une large valeur d'application pour diverses tâches.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
