


Améliorer l'efficacité du traitement des données : conseils pour lire des fichiers Excel à l'aide de pandas
Optimiser le processus de traitement des données : conseils Pandas pour lire les fichiers Excel
Introduction :
Dans le processus d'analyse et de traitement des données, Excel est l'une des sources de données les plus courantes. Cependant, la lecture et le traitement des fichiers Excel s’avèrent souvent inefficaces, surtout lorsque la quantité de données est importante. À cette fin, cet article présentera comment utiliser la bibliothèque Pandas de Python pour optimiser le processus de lecture et de traitement des données, et fournira des exemples de code spécifiques.
1. Introduction à la bibliothèque Pandas
Pandas est une puissante bibliothèque de traitement de données. Elle fournit des structures de données simples et efficaces, telles que Series et DataFrame, ainsi que des méthodes et fonctions de traitement de données riches. La structure de données de base de la bibliothèque Pandas est DataFrame, qui est similaire à un tableau bidimensionnel dans Excel et peut faciliter la manipulation et l'analyse des données.
2. Installez et importez la bibliothèque Pandas
Avant d'utiliser Pandas, vous devez d'abord installer la bibliothèque Pandas. La bibliothèque Pandas peut être facilement installée à l'aide de la commande pip :
pip install pandas
Une fois l'installation terminée, vous pouvez importer la bibliothèque Pandas dans le script Python :
import pandas as pd
3. Pandas lit les fichiers Excel
Pandas propose diverses méthodes pour lire Fichiers Excel. Il en existe deux les plus couramment utilisés : read_excel() et to_excel(). La méthode
read_excel()
read_excel() peut lire des fichiers Excel et les convertir en objets DataFrame. Voici un exemple simple de lecture d'un fichier Excel :df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
Copier après la connexionOù, "data.xlsx" est le nom du fichier Excel à lire et "Sheet1" est le nom de la feuille de calcul à lire. Si sheet_name n'est pas spécifié, la première feuille de calcul est lue par défaut. La méthode
to_excel()
to_excel() est utilisée pour enregistrer l'objet DataFrame sous forme de fichier Excel. Voici un exemple :df.to_excel('data_processed.xlsx', sheet_name='Sheet1', index=False)
Copier après la connexionOù, "data_processed.xlsx" est le nom du fichier Excel à enregistrer et "Sheet1" est le nom de la feuille de calcul dans laquelle être enregistré. index=False signifie ne pas enregistrer l'index du DataFrame dans Excel.
4. Optimiser le processus de traitement des données
Lors de la lecture et du traitement de fichiers Excel, certaines techniques courantes peuvent améliorer l'efficacité et la lisibilité du code.
Spécifiez les colonnes à lire
S'il y a beaucoup de colonnes dans le fichier Excel, mais que nous n'en avons besoin que de quelques-unes, nous pouvons lire uniquement des colonnes spécifiques en spécifiant le paramètre usecols. Un exemple est le suivant :df = pd.read_excel('data.xlsx', sheet_name='Sheet1', usecols=['列1', '列2', '列3'])
Copier après la connexionIgnorer les lignes et colonnes inutiles
Lors de la lecture de fichiers Excel, vous devez parfois ignorer certaines lignes ou colonnes inutiles. Ceci peut être réalisé en spécifiant les paramètres skiprows et skip_columns. Les exemples sont les suivants :df = pd.read_excel('data.xlsx', sheet_name='Sheet1', skiprows=3, skip_columns=[0])
Copier après la connexionskiprows signifie sauter les premières lignes, et skip_columns signifie sauter les colonnes spécifiées.
- Nettoyage et traitement des données
Après avoir lu le fichier Excel, les données doivent généralement être nettoyées et traitées. Pandas fournit une série de méthodes et de fonctions pour mettre en œuvre diverses opérations de traitement de données, telles que le filtrage, le tri, la fusion, le fractionnement des données, etc. Fusionner plusieurs feuilles de calcul
Si un fichier Excel contient plusieurs feuilles de calcul, vous pouvez utiliser la méthode pandas.concat() pour fusionner ces feuilles de calcul. Un exemple est le suivant :dfs = [] for sheet_name in ['Sheet1', 'Sheet2', 'Sheet3']: df = pd.read_excel('data.xlsx', sheet_name=sheet_name) dfs.append(df) combined_df = pd.concat(dfs)
Copier après la connexionLe code ci-dessus lit et enregistre chaque feuille de calcul du fichier Excel dans une liste, puis les fusionne dans un objet DataFrame via la méthode pd.concat().
5. Conclusion
Cet article présente les techniques d'utilisation de la bibliothèque Pandas pour optimiser le processus de traitement des données, notamment la lecture de fichiers Excel, l'enregistrement de fichiers Excel et l'optimisation du processus de traitement des données. Pandas fournit une multitude de méthodes et de fonctions pour traiter de grandes quantités de données, nous aidant ainsi à analyser et à traiter les données plus efficacement. J'espère que cet article sera utile à tous dans le processus de traitement des données.Remarque : les exemples de code ci-dessus sont uniquement à titre de référence. Dans les applications réelles, des ajustements appropriés doivent être effectués en fonction des conditions spécifiques des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La complexité temporelle mesure le temps d'exécution d'un algorithme par rapport à la taille de l'entrée. Les conseils pour réduire la complexité temporelle des programmes C++ incluent : le choix des conteneurs appropriés (tels que vecteur, liste) pour optimiser le stockage et la gestion des données. Utilisez des algorithmes efficaces tels que le tri rapide pour réduire le temps de calcul. Éliminez les opérations multiples pour réduire le double comptage. Utilisez des branches conditionnelles pour éviter les calculs inutiles. Optimisez la recherche linéaire en utilisant des algorithmes plus rapides tels que la recherche binaire.

Golang améliore l'efficacité du traitement des données grâce à la concurrence, à une gestion efficace de la mémoire, à des structures de données natives et à de riches bibliothèques tierces. Les avantages spécifiques incluent : Traitement parallèle : les coroutines prennent en charge l'exécution de plusieurs tâches en même temps. Gestion efficace de la mémoire : le mécanisme de récupération de place gère automatiquement la mémoire. Structures de données efficaces : les structures de données telles que les tranches, les cartes et les canaux accèdent et traitent rapidement les données. Bibliothèques tierces : couvrant diverses bibliothèques de traitement de données telles que fasthttp et x/text.

Comparez les capacités de traitement des données de Laravel et CodeIgniter : ORM : Laravel utilise EloquentORM, qui fournit un mappage relationnel classe-objet, tandis que CodeIgniter utilise ActiveRecord pour représenter le modèle de base de données en tant que sous-classe de classes PHP. Générateur de requêtes : Laravel dispose d'une API de requêtes chaînées flexible, tandis que le générateur de requêtes de CodeIgniter est plus simple et basé sur des tableaux. Validation des données : Laravel fournit une classe Validator qui prend en charge les règles de validation personnalisées, tandis que CodeIgniter a moins de fonctions de validation intégrées et nécessite un codage manuel des règles personnalisées. Cas pratique : l'exemple d'enregistrement d'utilisateur montre Lar

1. Appuyez sur la combinaison de touches (touche Win + R) sur le bureau pour ouvrir la fenêtre d'exécution, puis entrez [regedit] et appuyez sur Entrée pour confirmer. 2. Après avoir ouvert l'éditeur de registre, nous cliquons pour développer [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer], puis voyons s'il y a un élément Sérialiser dans le répertoire. Sinon, nous pouvons cliquer avec le bouton droit sur Explorateur, créer un nouvel élément et le nommer Sérialiser. 3. Cliquez ensuite sur Sérialiser, puis cliquez avec le bouton droit sur l'espace vide dans le volet de droite, créez une nouvelle valeur de bit DWORD (32) et nommez-la Étoile.

La configuration des paramètres du Vivox100 révélée : Comment optimiser les performances du processeur ? À l’ère actuelle de développement technologique rapide, les smartphones sont devenus un élément indispensable de notre vie quotidienne. En tant qu'élément important d'un smartphone, l'optimisation des performances du processeur est directement liée à l'expérience utilisateur du téléphone mobile. En tant que smartphone haut de gamme, la configuration des paramètres du Vivox100 a attiré beaucoup d'attention, en particulier l'optimisation des performances du processeur a attiré beaucoup d'attention de la part des utilisateurs. En tant que « cerveau » du téléphone mobile, le processeur affecte directement la vitesse de fonctionnement du téléphone mobile.

Cinq façons d'optimiser l'efficacité des fonctions PHP : évitez la copie inutile de variables. Utilisez des références pour éviter la copie de variables. Évitez les appels de fonction répétés. Fonctions simples en ligne. Optimisation des boucles à l'aide de tableaux.

Récemment, "Black Myth : Wukong" a attiré une énorme attention dans le monde entier. Le nombre d'utilisateurs en ligne simultanés sur chaque plateforme a atteint un nouveau sommet. Ce jeu a connu un grand succès commercial sur plusieurs plateformes. La version Xbox de "Black Myth : Wukong" a été reportée. Bien que "Black Myth : Wukong" soit sorti sur les plateformes PC et PS5, il n'y a pas eu de nouvelles définitives concernant sa version Xbox. Il est entendu que le responsable a confirmé que "Black Myth : Wukong" serait lancé sur la plateforme Xbox. Cependant, la date précise de lancement n’a pas encore été annoncée. Il a été récemment rapporté que le retard de la version Xbox était dû à des problèmes techniques. Selon un blogueur concerné, il a appris grâce aux communications avec les développeurs et les « initiés Xbox » lors de la Gamescom que la version Xbox de « Black Myth : Wukong » existe.

Dans le développement C++ moderne, l’utilisation d’outils et de bibliothèques d’optimisation est cruciale. Des outils tels que Valgrind, Perf et LLDB identifient les goulots d'étranglement, mesurent les performances et déboguent. Les bibliothèques telles que Eigen, Boost et OpenCV améliorent l'efficacité dans des domaines tels que l'algèbre linéaire, les E/S réseau et la vision par ordinateur. Par exemple, utilisez Eigen pour optimiser la multiplication matricielle, Perf pour analyser les performances du programme et Boost::Asio pour mettre en œuvre des E/S réseau efficaces.
