Table des matières
Algorithmes et principes utilisés par les modèles de reconnaissance gestuelle
结论
Maison développement back-end Tutoriel Python Explorez les algorithmes et les principes des modèles de reconnaissance gestuelle (créez un modèle de formation simple à la reconnaissance gestuelle en Python)

Explorez les algorithmes et les principes des modèles de reconnaissance gestuelle (créez un modèle de formation simple à la reconnaissance gestuelle en Python)

Jan 24, 2024 pm 05:51 PM
人工智能 机器学习 深度学习

Explorez les algorithmes et les principes des modèles de reconnaissance gestuelle (créez un modèle de formation simple à la reconnaissance gestuelle en Python)

La reconnaissance gestuelle est un domaine de recherche important dans le domaine de la vision par ordinateur. Son objectif est de déterminer la signification des gestes en analysant les mouvements de la main humaine dans des flux vidéo ou des séquences d'images. La reconnaissance gestuelle a un large éventail d'applications, telles que les maisons intelligentes contrôlées par les gestes, la réalité virtuelle et les jeux, la surveillance de la sécurité et d'autres domaines. Cet article présentera les algorithmes et les principes utilisés dans les modèles de reconnaissance gestuelle et utilisera Python pour créer un modèle de formation simple à la reconnaissance gestuelle.

Algorithmes et principes utilisés par les modèles de reconnaissance gestuelle

Les algorithmes et principes utilisés par les modèles de reconnaissance gestuelle sont divers, notamment des modèles basés sur l'apprentissage profond, des modèles d'apprentissage automatique traditionnels, des méthodes basées sur des règles et des méthodes traditionnelles de traitement d'images. Les principes et caractéristiques de ces méthodes seront présentés ci-dessous.

1. Modèle basé sur le deep learning

Le deep learning est l'une des méthodes d'apprentissage automatique les plus populaires actuellement. Dans le domaine de la reconnaissance gestuelle, les modèles d’apprentissage profond sont également largement utilisés. Les modèles d'apprentissage profond apprennent à partir de grandes quantités de données pour extraire des fonctionnalités, puis utilisent ces fonctionnalités pour les classer. Dans la reconnaissance gestuelle, les modèles d'apprentissage profond utilisent souvent des réseaux de neurones convolutifs (CNN) ou des réseaux de neurones récurrents (RNN).

CNN est un réseau neuronal spécial capable de traiter efficacement les données d'image. CNN contient plusieurs couches convolutives et couches de pooling. La couche convolutive peut extraire les caractéristiques de l'image et la couche de pooling peut réduire la taille de l'image. CNN contient également plusieurs couches entièrement connectées pour la classification.

RNN est un réseau de neurones adapté aux données de séquence. Dans la reconnaissance gestuelle, RNN utilise généralement un réseau de mémoire à long terme (LSTM) ou une unité récurrente fermée (GRU). RNN peut prédire le prochain geste en apprenant les séquences de gestes précédentes. LSTM et GRU peuvent éviter le problème de gradient de disparition du RNN, permettant au modèle d'apprendre des séquences de gestes plus longues.

Le modèle basé sur l'apprentissage profond présente les caractéristiques suivantes :

  • peut gérer des séquences de gestes complexes ;
  • peut extraire automatiquement des fonctionnalités
  • nécessite une grande quantité de données pour l'entraînement ;
  • Nécessite des ressources informatiques plus élevées.

2. Modèles d'apprentissage automatique traditionnels

Les modèles d'apprentissage automatique traditionnels incluent les machines à vecteurs de support (SVM), les arbres de décision, les forêts aléatoires, etc. Ces modèles utilisent généralement des fonctionnalités conçues à la main telles que SIFT, HOG, etc. Ces fonctionnalités peuvent extraire des informations telles que la forme et la texture des gestes.

Les modèles d'apprentissage automatique traditionnels présentent les caractéristiques suivantes :
  • peuvent gérer des séquences de gestes plus simples
  • nécessite une conception manuelle des fonctionnalités
  • le temps de formation est court
  • nécessite une petite quantité de données pour la formation ; formation Les résultats sont plus faciles à interpréter.
  • 3. Méthode basée sur des règles

La méthode basée sur des règles est une méthode de conception manuelle de règles pour juger les gestes. Par exemple, des règles peuvent être conçues pour déterminer la direction, la forme, la vitesse, etc. des gestes. Cette approche nécessite une conception manuelle des règles et nécessite donc des connaissances et une expérience spécialisées.

L'approche basée sur des règles présente les caractéristiques suivantes :

peut être rapidement conçue et mise en œuvre

nécessite des connaissances et une expérience professionnelles
  • ne peut gérer que des types de gestes spécifiques ; séquence de gestes.
  • 4. Méthodes traditionnelles de traitement d'image

Les méthodes traditionnelles de traitement d'image utilisent généralement des techniques basées sur le seuillage, la détection des contours, la morphologie et d'autres techniques pour traiter les images gestuelles afin d'en extraire les caractéristiques. Ces fonctionnalités peuvent être utilisées pour la classification des gestes.

Les méthodes traditionnelles de traitement d'images présentent les caractéristiques suivantes :

peut gérer des gestes simples ;

nécessite une conception manuelle des fonctionnalités

le temps de formation est court
  • nécessite une petite quantité de données pour la formation ;
  • formation Les résultats sont plus faciles à interpréter.
  • Utilisez Python pour créer un modèle d'entraînement simple à la reconnaissance des gestes
Dans cette section, nous utiliserons Python pour créer un modèle d'entraînement simple à la reconnaissance des gestes, qui utilisera une méthode basée sur l'apprentissage en profondeur. Plus précisément, nous utiliserons les bibliothèques Keras et TensorFlow pour créer et entraîner le modèle.

1. Préparer les données

Tout d'abord, nous devons préparer l'ensemble de données gestuelles. Ici, nous utilisons un ensemble de données appelé « ASL Alphabet », qui contient des images gestuelles des lettres A-Z de la langue des signes américaine. L'ensemble de données peut être téléchargé depuis Kaggle.

2. Prétraitement des données

Ensuite, nous devons prétraiter l'image gestuelle. Nous utiliserons la bibliothèque OpenCV pour lire et traiter les images. Plus précisément, nous allons d'abord redimensionner les images à la même taille, puis les convertir en images en niveaux de gris et normaliser les valeurs des pixels.

import cv2
import os
import numpy as np

IMG_SIZE = 200

def preprocess_data(data_dir):
    X = []
    y = []
    for folder_name in os.listdir(data_dir):
        label = folder_name
        folder_path = os.path.join(data_dir, folder_name)
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
            img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
            img = img/255.0
            X.append(img)
            y.append(label)
    X = np.array(X)
    y = np.array(y)
    return X, y
Copier après la connexion

3. Construire le modèle

Ensuite, nous allons construire un modèle basé sur un réseau neuronal convolutif. Plus précisément, nous utiliserons le modèle Sequential de la bibliothèque Keras pour construire le modèle. Le modèle contient plusieurs couches convolutives et de pooling, ainsi que plusieurs couches entièrement connectées.

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

def build_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 1)))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(128, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(256, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(29, activation='softmax'))
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
Copier après la connexion

4. Modèle de formation

接下来,我们将使用准备好的数据集和构建好的模型来训练模型。我们将使用Keras库中的fit方法来训练模型。

X_train, y_train = preprocess_data('asl_alphabet_train')
X_test, y_test = preprocess_data('asl_alphabet_test')

from keras.utils import to_categorical

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

model = build_model()
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
Copier après la connexion

5.评估模型

最后,我们将评估模型的性能。我们将使用Keras库中的evaluate方法来评估模型在测试集上的性能。

test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy:', test_acc)
Copier après la connexion

结论

本文介绍了手势识别模型使用的算法和原理,并使用Python创建了一个简单的手势识别训练模型。我们使用了基于深度学习的方法,并使用Keras和TensorFlow库来构建和训练模型。最后,我们评估了模型在测试集上的性能。手势识别是一个复杂的问题,需要综合考虑多个因素,例如手势序列的长度、手势的复杂度等。因此,在实际应用中,需要根据具体需求选择合适的算法和模型。

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Jun 10, 2024 am 11:08 AM

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Jun 11, 2024 pm 03:57 PM

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

AlphaFold 3 est lancé, prédisant de manière exhaustive les interactions et les structures des protéines et de toutes les molécules de la vie, avec une précision bien plus grande que jamais AlphaFold 3 est lancé, prédisant de manière exhaustive les interactions et les structures des protéines et de toutes les molécules de la vie, avec une précision bien plus grande que jamais Jul 16, 2024 am 12:08 AM

Editeur | Radis Skin Depuis la sortie du puissant AlphaFold2 en 2021, les scientifiques utilisent des modèles de prédiction de la structure des protéines pour cartographier diverses structures protéiques dans les cellules, découvrir des médicaments et dresser une « carte cosmique » de chaque interaction protéique connue. Tout à l'heure, Google DeepMind a publié le modèle AlphaFold3, capable d'effectuer des prédictions de structure conjointe pour des complexes comprenant des protéines, des acides nucléiques, de petites molécules, des ions et des résidus modifiés. La précision d’AlphaFold3 a été considérablement améliorée par rapport à de nombreux outils dédiés dans le passé (interaction protéine-ligand, interaction protéine-acide nucléique, prédiction anticorps-antigène). Cela montre qu’au sein d’un cadre unique et unifié d’apprentissage profond, il est possible de réaliser

SK Hynix présentera de nouveaux produits liés à l'IA le 6 août : HBM3E à 12 couches, NAND à 321 hauteurs, etc. SK Hynix présentera de nouveaux produits liés à l'IA le 6 août : HBM3E à 12 couches, NAND à 321 hauteurs, etc. Aug 01, 2024 pm 09:40 PM

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière

See all articles