Maison Périphériques technologiques IA Réseau neuronal à fonction de base radiale (RBFNN)

Réseau neuronal à fonction de base radiale (RBFNN)

Jan 24, 2024 pm 06:45 PM
réseau de neurones artificiels

Réseau neuronal à fonction de base radiale (RBFNN)

Le réseau neuronal à fonction de base radiale (RBFNN) est un modèle de réseau neuronal largement utilisé dans les problèmes de classification, de régression et de clustering. Il se compose de deux couches de neurones, la couche d’entrée et la couche de sortie. La couche d'entrée est utilisée pour recevoir le vecteur caractéristique des données et la couche de sortie est utilisée pour prédire la valeur de sortie des données. La particularité de RBFNN est que les poids de connexion entre ses neurones sont calculés via des fonctions de base radiale. La fonction de base radiale est une fonction basée sur la distance qui mesure la similarité entre les données d'entrée et les neurones. Les fonctions de base radiale couramment utilisées incluent les fonctions gaussiennes et les fonctions polynomiales. Dans RBFNN, la couche d'entrée transmet les vecteurs de caractéristiques aux neurones de la couche cachée. Les neurones de la couche cachée utilisent la fonction de base radiale pour calculer la similarité entre les données d'entrée et celles-ci et transmettent le résultat aux neurones de la couche de sortie. Couche de sortie

La couche d'entrée de RBFNN est la même que les autres modèles de réseaux neuronaux et est utilisée pour recevoir le vecteur caractéristique des données. Cependant, la couche de sortie du RBFNN est différente des autres modèles dans la mesure où elle utilise un ensemble de fonctions de base pour calculer la valeur de sortie, généralement une fonction gaussienne ou une fonction polynomiale.

Dans RBFNN, les paramètres de la fonction de base sont déterminés par entraînement. Le processus de formation comprend deux étapes principales : la détermination du point central et le calcul des poids. Le point central est le centre de la fonction de base et est généralement déterminé à l'aide d'un algorithme de clustering. Une fois le point central déterminé, les poids peuvent être calculés en résolvant un système d'équations linéaires. De cette manière, RBFNN peut ajuster de manière adaptative les paramètres de la fonction de base grâce aux données d'entraînement, améliorant ainsi ses performances et sa précision.

Lorsque les données d'entrée arrivent à la couche d'entrée d'un réseau neuronal à fonction de base radiale (RBFNN), elles sont transmises aux fonctions de base pour traitement. Chaque fonction de base calcule la distance entre les données d'entrée et son point central et utilise cette distance comme sortie. Ces sorties sont transmises à la couche de sortie, où chaque neurone de sortie représente une catégorie ou une valeur de sortie. Chaque neurone de sortie calcule une somme pondérée des sorties de la fonction de base, et ces poids sont déterminés par le processus d'entraînement. Enfin, la couche de sortie génère un vecteur représentant le résultat de la prédiction.

Par rapport à d'autres modèles de réseaux neuronaux, RBFNN présente les avantages suivants :

1 Vitesse de calcul rapide : Par rapport à d'autres modèles de réseaux neuronaux, la vitesse de calcul RBFNN est plus rapide car il suffit de calculer la fonction de base entre la distance. sans avoir besoin d’une multiplication matricielle complexe.

2. Le modèle a une forte interprétabilité : Le modèle RBFNN a une forte interprétabilité. Puisque les fonctions de base sont explicites, le processus de prise de décision du modèle ainsi que les résultats prédits peuvent être facilement expliqués.

3. Convient aux petits ensembles de données d'échantillons : le modèle RBFNN convient aux petits ensembles de données d'échantillons car il peut déterminer le point central de la fonction de base grâce à un algorithme de clustering, évitant ainsi le problème de surajustement.

4. Forte robustesse : le modèle RBFNN a une bonne robustesse au bruit et aux valeurs aberrantes. Même s'il y a du bruit ou des valeurs aberrantes dans l'ensemble de données, il peut toujours donner des résultats de prédiction raisonnables.

Cependant, le modèle RBFNN présente également certaines lacunes, telles que :

1. Exigences élevées en matière d'ensemble de données de formation : le modèle RBFNN a des exigences élevées en matière de données de formation et doit avoir de bonnes capacités de classification ou de régression, sinon il peut provoquer un surajustement ou un sous-ajustement du modèle.

2. Le réglage des paramètres est difficile : Il existe un grand nombre de paramètres dans le modèle RBFNN, notamment le nombre de fonctions de base, la position et le poids du point central, etc.

3. Incapable de gérer les problèmes séparables non linéaires : le modèle RBFNN ne peut pas gérer les problèmes séparables non linéaires. Dans ce cas, d'autres modèles de réseaux neuronaux plus complexes doivent être utilisés.

En bref, le réseau neuronal à fonction de base radiale est un modèle de réseau neuronal efficace, adapté aux petits ensembles de données d'échantillons et aux problèmes présentant des exigences de robustesse élevées. Cependant, il présente également certaines lacunes qui nécessitent une sélection minutieuse dans les applications pratiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Explorez les concepts, les différences, les avantages et les inconvénients de RNN, LSTM et GRU Explorez les concepts, les différences, les avantages et les inconvénients de RNN, LSTM et GRU Jan 22, 2024 pm 07:51 PM

Dans les données de séries chronologiques, il existe des dépendances entre les observations, elles ne sont donc pas indépendantes les unes des autres. Cependant, les réseaux de neurones traditionnels traitent chaque observation comme indépendante, ce qui limite la capacité du modèle à modéliser des données de séries chronologiques. Pour résoudre ce problème, le réseau neuronal récurrent (RNN) a été introduit, qui a introduit le concept de mémoire pour capturer les caractéristiques dynamiques des données de séries chronologiques en établissant des dépendances entre les points de données du réseau. Grâce à des connexions récurrentes, RNN peut transmettre des informations antérieures à l'observation actuelle pour mieux prédire les valeurs futures. Cela fait de RNN un outil puissant pour les tâches impliquant des données de séries chronologiques. Mais comment RNN parvient-il à obtenir ce type de mémoire ? RNN réalise la mémoire via la boucle de rétroaction dans le réseau neuronal. C'est la différence entre RNN et le réseau neuronal traditionnel.

Calcul des opérandes à virgule flottante (FLOPS) pour les réseaux de neurones Calcul des opérandes à virgule flottante (FLOPS) pour les réseaux de neurones Jan 22, 2024 pm 07:21 PM

FLOPS est l'une des normes d'évaluation des performances informatiques, utilisée pour mesurer le nombre d'opérations en virgule flottante par seconde. Dans les réseaux de neurones, FLOPS est souvent utilisé pour évaluer la complexité informatique du modèle et l'utilisation des ressources informatiques. C'est un indicateur important utilisé pour mesurer la puissance de calcul et l'efficacité d'un ordinateur. Un réseau de neurones est un modèle complexe composé de plusieurs couches de neurones utilisées pour des tâches telles que la classification, la régression et le clustering des données. La formation et l'inférence des réseaux de neurones nécessitent un grand nombre de multiplications matricielles, de convolutions et d'autres opérations de calcul, la complexité de calcul est donc très élevée. FLOPS (FloatingPointOperationsperSecond) peut être utilisé pour mesurer la complexité de calcul des réseaux de neurones afin d'évaluer l'efficacité d'utilisation des ressources de calcul du modèle. FIASCO

Définition et analyse structurelle du réseau neuronal flou Définition et analyse structurelle du réseau neuronal flou Jan 22, 2024 pm 09:09 PM

Le réseau de neurones flous est un modèle hybride qui combine la logique floue et les réseaux de neurones pour résoudre des problèmes flous ou incertains difficiles à gérer avec les réseaux de neurones traditionnels. Sa conception s'inspire du flou et de l'incertitude de la cognition humaine, c'est pourquoi il est largement utilisé dans les systèmes de contrôle, la reconnaissance de formes, l'exploration de données et d'autres domaines. L'architecture de base du réseau neuronal flou se compose d'un sous-système flou et d'un sous-système neuronal. Le sous-système flou utilise la logique floue pour traiter les données d'entrée et les convertir en ensembles flous pour exprimer le flou et l'incertitude des données d'entrée. Le sous-système neuronal utilise des réseaux de neurones pour traiter des ensembles flous pour des tâches telles que la classification, la régression ou le clustering. L'interaction entre le sous-système flou et le sous-système neuronal confère au réseau neuronal flou des capacités de traitement plus puissantes et peut

Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Jan 24, 2024 am 10:36 AM

Le modèle LSTM bidirectionnel est un réseau neuronal utilisé pour la classification de texte. Vous trouverez ci-dessous un exemple simple montrant comment utiliser le LSTM bidirectionnel pour les tâches de classification de texte. Tout d'abord, nous devons importer les bibliothèques et modules requis : importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Débruitage d'image à l'aide de réseaux de neurones convolutifs Débruitage d'image à l'aide de réseaux de neurones convolutifs Jan 23, 2024 pm 11:48 PM

Les réseaux de neurones convolutifs fonctionnent bien dans les tâches de débruitage d'images. Il utilise les filtres appris pour filtrer le bruit et restaurer ainsi l'image originale. Cet article présente en détail la méthode de débruitage d'image basée sur un réseau neuronal convolutif. 1. Présentation du réseau neuronal convolutif Le réseau neuronal convolutif est un algorithme d'apprentissage en profondeur qui utilise une combinaison de plusieurs couches convolutives, des couches de regroupement et des couches entièrement connectées pour apprendre et classer les caractéristiques de l'image. Dans la couche convolutive, les caractéristiques locales de l'image sont extraites via des opérations de convolution, capturant ainsi la corrélation spatiale dans l'image. La couche de pooling réduit la quantité de calcul en réduisant la dimension des fonctionnalités et conserve les principales fonctionnalités. La couche entièrement connectée est responsable du mappage des fonctionnalités et des étiquettes apprises pour mettre en œuvre la classification des images ou d'autres tâches. La conception de cette structure de réseau rend les réseaux de neurones convolutifs utiles dans le traitement et la reconnaissance d'images.

Réseau de neurones jumeaux : analyse des principes et des applications Réseau de neurones jumeaux : analyse des principes et des applications Jan 24, 2024 pm 04:18 PM

Le réseau neuronal siamois est une structure de réseau neuronal artificiel unique. Il se compose de deux réseaux de neurones identiques partageant les mêmes paramètres et poids. Dans le même temps, les deux réseaux partagent également les mêmes données d’entrée. Cette conception a été inspirée par des jumeaux, car les deux réseaux de neurones sont structurellement identiques. Le principe du réseau neuronal siamois est d'accomplir des tâches spécifiques, telles que la correspondance d'images, la correspondance de textes et la reconnaissance de visages, en comparant la similitude ou la distance entre deux données d'entrée. Pendant la formation, le réseau tente de mapper des données similaires vers des régions adjacentes et des données différentes vers des régions distantes. De cette manière, le réseau peut apprendre à classer ou à faire correspondre différentes données pour obtenir des résultats correspondants.

Introduction à SqueezeNet et ses caractéristiques Introduction à SqueezeNet et ses caractéristiques Jan 22, 2024 pm 07:15 PM

SqueezeNet est un algorithme petit et précis qui établit un bon équilibre entre haute précision et faible complexité, ce qui le rend idéal pour les systèmes mobiles et embarqués aux ressources limitées. En 2016, des chercheurs de DeepScale, de l'Université de Californie à Berkeley et de l'Université de Stanford ont proposé SqueezeNet, un réseau neuronal convolutif (CNN) compact et efficace. Ces dernières années, les chercheurs ont apporté plusieurs améliorations à SqueezeNet, notamment SqueezeNetv1.1 et SqueezeNetv2.0. Les améliorations apportées aux deux versions augmentent non seulement la précision, mais réduisent également les coûts de calcul. Précision de SqueezeNetv1.1 sur l'ensemble de données ImageNet

Étapes pour écrire un réseau neuronal simple à l'aide de Rust Étapes pour écrire un réseau neuronal simple à l'aide de Rust Jan 23, 2024 am 10:45 AM

Rust est un langage de programmation au niveau système axé sur la sécurité, les performances et la concurrence. Il vise à fournir un langage de programmation sûr et fiable adapté à des scénarios tels que les systèmes d'exploitation, les applications réseau et les systèmes embarqués. La sécurité de Rust vient principalement de deux aspects : le système de propriété et le vérificateur d'emprunt. Le système de propriété permet au compilateur de vérifier le code pour détecter les erreurs de mémoire au moment de la compilation, évitant ainsi les problèmes courants de sécurité de la mémoire. En forçant la vérification des transferts de propriété des variables au moment de la compilation, Rust garantit que les ressources mémoire sont correctement gérées et libérées. Le vérificateur d'emprunt analyse le cycle de vie de la variable pour garantir que la même variable ne sera pas accédée par plusieurs threads en même temps, évitant ainsi les problèmes de sécurité de concurrence courants. En combinant ces deux mécanismes, Rust est capable de fournir

See all articles