Mysql技术内幕InnoDB存储引擎_MySQL
Mysql技术内幕——InnoDB存储引擎
http://jingyan.baidu.com/article/fedf07377c493f35ac89770c.html
一.mysql体系结构和存储引擎
1.1、数据库和实例的区别
数据库:物理操作系统或其他形式文件类型的集合。在mysql下数据库文件可以是frm,myd,myi,ibd结尾的文件。
数据库实例:由数据库后台进程/线程以及一个共享内存区组成。数据库实例才是真正用来操作数据库文件的。
mysql数据库是单进程多线程的程序,与sql server比较类似。也就是说,Mysql数据库实例在系统上的表现就是一个进程。
1.2、mysql的体系结构
mysql由连接池组件、管理服务和工具组件、sql接口组建、查询分析器组件、优化器组件、缓存组件、插件是存储引擎、物理文件。
1.3、mysql存储引擎
1.3.1、innodb存储引擎,特点支持外键、行锁、非锁定读(默认情况下读取不会产生锁)、mysql-4.1开始支持每个innodb引擎的表单独放到一个表空间里。innodb通过使用MVCC来获取高并发性,并且实现sql标准的4种隔离级别,同时使用一种被称成next-key locking的策略来避免换读(phantom)现象。除此之外innodb引擎还提供了插入缓存(insert buffer)、二次写(double write)、自适应哈西索引(adaptive hash index)、预读(read ahead)等高性能技术。
1.3.2、myisam存储引擎,myisam特点是不支持事物,适合olap应用,myisam表由MYD和MYI组成。mysql-5.0版本之前,myisam默认支持的表大小为4G,从mysql-5.0以后,myisam默认支持256T的表单数据。myisam只缓存索引数据。
1.3.3、NDB存储引擎,特点是数据放在内存中,mysql-5.1版本开始可以将非索引数据放到磁盘上。NDB之前的缺陷是join查询是mysql数据库层完成的,而不是存储引擎完成的,复杂的join查询需要巨大的网络开销,速度很慢。当前mysql cluster7.2版本中已经解决此问题,join查询效率提高了70倍。
1.3.4、memeory存储引擎,将数据放到内存中,默认使用hash索引,不支持text和blob类型,varchara是按照char的方式来存储的。mysql数据库使用memory存储引擎作为临时表还存储中间结果集(intermediate result),如果中间集结果大于memorg表的容量设置,又或者中间结果集包含text和blog列类型字段,则mysql会把他们转换到myisam存储引擎表而放到磁盘上,会对查询产生性能影响。
1.3.5、archive存储引擎,压缩能力较强,主要用于归档存储。
1.3.6、federated存储引擎,不存储数据,他指向一台远程mysql数据库上的表。
1.3.7、maria存储引擎,myisam的后续版本,支持缓存数据和索引,行锁设计,支持mvcc,支持事务和非事务安全的选项,以及更好的BLOG字符类型的处理性能。
1.3.8、其他存储引擎,sphinx用于全文索引,infobright用于数据仓库。
1.4连接Mysql
1.4.1、TCP/IP:基于网络的连接,连接进行权限检查。
1.4.2、命名管道和共享内存:Windows系统上同一服务器上的两进程可通过命名管道连接,需在配置文件中启用--enable-named-pipe选项。
1.4.3、Unix套接字:客户端与服务端位于同一服务器时才可使用,可以在my.cnf中指定-socket=/tmp/mysql.sock,连接时指定./mysql -S/tmp/mysql.sock。
二.InnoDB存储引擎
2.2、innodb引擎架构
InnoDB的多个内存块组成了内存池,负责如下工作:
1).维护所有进程/线程需要访问的多个内部数据结构。
2).缓存磁盘上的数据,方便快速的读取,并且在对磁盘文件的数据进行修改之前在这里缓存。
3).重做日志缓存。
后台线程的主要作用是负责刷新内存池中的数据,保证缓冲池中的内存缓存是最近的数据,此外、将已经修改的数据文件刷新到磁盘文件
2.2.1、后台线程
innodb存储引擎后台有7个线程,—–4个IO线程(insert buffer thread,log thread,read thread,write thread),1个master thread,一个lock监控线程,一个错误监控线程。
2.2.2、内存
innodb存储引擎内存由以下三个部分组成:缓冲池(buffer pool),重做日志缓存(redo log buffer),额外的内存池(additional memory pool)。可以使用 show engine innodb status来查看innodb_buffer_pool的使用情况。
innodb_buffer_pool_size:具体看,缓冲池中的数据库类型有:索引页、数据库页、undo页、插入缓存页(insert buffer)、自适应hash(adaptive hashindex)、innodb存储的锁信息(lock info)、数据字典信息(data dictionary)。
InnoDB工作方式:将数据文件按页(每页16K)读入InnoDBbuffer pool,然后按最近最少使用算法(LRU)保留缓存数据,最后通过一定频率将脏页刷新到文件。
2.3、master thread
2.3.1、master thread源码分析
2.3.2、master thread的潜在问题
1、由于硬件的发展,现在的硬件性能已经提高了很多,如果innodb每秒最大刷新100个脏页,那么效率会很低,为了解决这个问题,innodb plugin提供了一个参数innodb_io_capacity,用来表示磁盘IO的吞吐量,默认值是200,规则如下:在合并插入缓存时,合并插入缓存的数量为innodb_io_capacity的5%;在从缓冲区刷新脏页时,啥新脏页的数量为innodb_io_capacity。
2、关于innodb_max_dirty_pages_pct值的争议,如果值过大,内存也很大或者服务器压力很大,那么效率很降低,如果设置的值过小,那么硬盘的压力会增加,建议是在75-80.并且innodb plugin引进了innodb_adaptive_flushng(自适应的刷新),该值影响每秒刷新脏页的数量。
2.4、关键特性,为innodb提高性能的技术
2.4.1、插入缓存
当一个表有非聚集索引时,对于非聚集索引的叶子节点的插入不是顺序的,这时候需要离散的访问非聚集索引页,性能就在这里降低了,这是由于b+树的原理导致的。插入缓存就是用来解决这个问题的。
对于非聚集索引的插入和更新操作,不是每一次都直接插入索引页,而是先判断插入的非聚集索引页是否在缓存中,如果在就直接插入,如果不在就放入到一个插入缓冲区中,好似欺骗数据库这个非聚集索引已经插入到叶子节点了。然后再以一定的频率插入缓存和非聚集索引页字节点的合并操作。
插入缓存的使用需要满足以下两个条件(也就是非唯一的辅助索引):索引是辅助索引;索引不是唯一的。
2.4.2、两次写
两次写给innodb带来的是可靠性,主要用来解决部分写失败(partial page write)。在应用重做日之前,我们需要一个页的副本,当写入失效发生时,先通过页的副本来还原该页,再进行重做,这就是doublewrite。
doublewrite有两部分组成,一部分是内存中的doublewrite buffer,大小为2M,另外一部分就是物理磁盘上的共享表空间中联系的128个页,即两个区,大小同样为2M。当缓冲池的张也刷新时,并不直接写硬盘,而是回通过memcpy函数将脏页先拷贝到内存中的doublewrite buffer,之后通过doublewrite buffer再分两次写,每次写入1M到共享表空间的物理磁盘上,然后马上调用fsync函数,同步磁盘。
2.4.3、自适应哈西索引
由于innodb不支持hash索引,但是在某些情况下hash索引的效率很高,于是出现了 adaptive hash index功能,innodb存储引擎会监控对表上索引的查找,如果观察到建立hash索引可以提高性能的时候,则自动建立hash索引。
2.5、启动、关闭、恢复
innodb_fast_shutdown影响InnoDB表关闭。该参数有0、1、2三个参数。
0 MySQL关闭时 完成所有的full purge和merge insertbuffer操作
1默认值 只将缓冲池内的一些脏页刷新至磁盘
2将日志都写入日志文件不会有任何事务丢失但下次启动时会进行recovery
innodb_force_recovery影响整个innodb存储引擎的恢复状况,该值默认为0,表示当需要恢复时,需要执行所有的恢复操作,当不能进行有效恢复时,如数据页发生了corruption,mysql数据库可能宕机,并把错误写入错误日志中。
三.文件
3.1参数文件
Mysql实例可以不需要参数文件,这是所有的参数值取决于编译Mysql时指定的默认值和源代码中指定参数的默认值。其参数文件是Mysql.cnf。
3.1.1、什么是参数
参数是一个键/值对。可以使用show variables like命令查看,也可以通过information_schema的GLOBAL_VARIABLES视图来查找。
3.1.2、参数类型
参数文件分为两类:动态参数和静态参数。动态参数意味着你可以在Mysql实例运行中进行更改;静态参数说明在整个实例生命周期内都不得进行更改,好像是只读的。对于动态参数,又可以分为global和session关键字,表明该参数的修改是基于当前会话还是真格实例的生命周期。有些动态参数只能在会话中进行修改,如autocommit;有些参数修改完后,在整个实例生命周期中都会生效,如binlog_cache_size;而有些参数既可以在会话又可以在整个实例的生命周期内生效,如read_buffer_size。
3.2、日志文件
3.2.1、错误日志
错误日志对Mysql的启动、运行、关闭过程进行了记录。出现Mysql不能正常启动时,第一个必须查找的文件应该就是错误日志文件。使用show variables like ‘log_error’来定位文件。
3.2.2、慢查询日志
慢查询能为SQL语句的优化带来很好的帮助。设定一个阀值,将运行时间超过该值的所有SQL语句都记录到慢查询日志文件中。用参数long_query_time来设置。另一个参数log_queries_not_using_indexes,若运行的SQL语句没有使用索引,则这条SQL语句会被记录下来。
3.2.3、查询日志
查询日志记录了所有对Mysql请求的信息,不论这些请求是否得到正确的执行。默认文件名为:主机名.log。
3.2.4、二进制日志
二进制记录了对数据库执行更改的所有操作,但是不包括SELECT和SHOW操作,还包括了执行时间和更改操作时间。可用来恢复某些数据,同时也可以用来复制同步远程数据库。将binlog_format设置成row,可以支持事务隔离级别为READ COMMITTED,以获得更好的并发性。在使用MIXED格式下,mysql采用STATEMENT格式进行二进制日志文件的记录,但是有一些情况下会使用ROW格式,可能的情况如下:
1、表的存储引擎为NDB,这个时候DML操作都会以ROW格式记录。
2、使用了uuid()、user(),current_user(),found_rows(),row_count(),等不确定函数。
3、使用了insert delay语句
4、使用了用户定于的函数(UDF)
5、使用了临时表(temporary table)
注意:针对系统库mysql里面的表发生变化的处理规则如下:
1、 如果采用insert,update,delete直接操作表,则日志根据binlog_format设定的格式记录。
2、 如果使用grant,revoke,set password等DCL语句,那么无论如何都会使用SBR模式记录。
3、 blockhole引擎不支持row格式,ndb引擎不支持statement格式。
3.3、套件字文件
Unix系统下本地连接Mysql可以采用Unix套接字方法,需要一个套接字文件,可以使用show variableslike ‘socket’查询。
3.4、pid文件和表结构定义文件
pid文件是实例启动是记录自己进程ID号的文件,表结构定义文件是以frm为后缀名的文件,还可以用来存放视图的定义。
3.5、innodb引擎文件
3.5.1、表空间文件
默认表空间文件为ibdata1文件innodb_data_file_path存储数据,innodb_file_per_table可以按表分别产生一个表空间.db文件,但仅存该表的数据索引和插入缓冲等信息,其他信息如undo信息,系统事务信息,double write buffer等还是存放在默认表空间(ibdata1或表空间组)里。
3.5.2、重做日志文件
redo log是在实例或者介质失败的时候,用来保证数据完整性。每个innodb存储引擎至少有一个重做日志组,每个重做日志文件组下至少又2个重做日志文件,如默认的ib_logfile0、ib_logfile1.为了得到更高的可靠性,你可以设置多个重做镜像日志组。
因为重做日志条目先被写到日志缓冲中,然后根据一定条件刷新到磁盘重做日志文件中。与redo log相关的就是innodb_flush_log_at_trx_commit的值,对innodb的性能影响很大。他有0,1,2三个值,0代表提交事务时,并不同步写redo log,而是等master threas每秒写。1代表commit的时候就将redo log缓存写入磁盘,2代表commit的时候将redo log缓存异步的写入磁盘。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

Le premier article pilote et clé présente principalement plusieurs systèmes de coordonnées couramment utilisés dans la technologie de conduite autonome, et comment compléter la corrélation et la conversion entre eux, et enfin construire un modèle d'environnement unifié. L'objectif ici est de comprendre la conversion du véhicule en corps rigide de caméra (paramètres externes), la conversion de caméra en image (paramètres internes) et la conversion d'image en unité de pixel. La conversion de 3D en 2D aura une distorsion, une traduction, etc. Points clés : Le système de coordonnées du véhicule et le système de coordonnées du corps de la caméra doivent être réécrits : le système de coordonnées planes et le système de coordonnées des pixels Difficulté : la distorsion de l'image doit être prise en compte. La dé-distorsion et l'ajout de distorsion sont compensés sur le plan de l'image. 2. Introduction Il existe quatre systèmes de vision au total : système de coordonnées du plan de pixels (u, v), système de coordonnées d'image (x, y), système de coordonnées de caméra () et système de coordonnées mondiales (). Il existe une relation entre chaque système de coordonnées,

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Quelques réflexions personnelles de l'auteur Dans le domaine de la conduite autonome, avec le développement de sous-tâches/solutions de bout en bout basées sur BEV, les données d'entraînement multi-vues de haute qualité et la construction de scènes de simulation correspondantes sont devenues de plus en plus importantes. En réponse aux problèmes des tâches actuelles, la « haute qualité » peut être divisée en trois aspects : des scénarios à longue traîne dans différentes dimensions : comme les véhicules à courte portée dans les données sur les obstacles et les angles de cap précis lors du découpage des voitures, et les données sur les lignes de voie. . Scènes telles que des courbes avec des courbures différentes ou des rampes/fusions/fusions difficiles à capturer. Celles-ci reposent souvent sur de grandes quantités de données collectées et sur des stratégies complexes d’exploration de données, qui sont coûteuses. Valeur réelle 3D - image hautement cohérente : l'acquisition actuelle des données BEV est souvent affectée par des erreurs d'installation/calibrage du capteur, des cartes de haute précision et l'algorithme de reconstruction lui-même. cela m'a amené à

J'ai soudainement découvert un article vieux de 19 ans GSLAM : A General SLAM Framework and Benchmark open source code : https://github.com/zdzhaoyong/GSLAM Accédez directement au texte intégral et ressentez la qualité de ce travail ~ 1 Technologie SLAM abstraite a remporté de nombreux succès récemment et a attiré de nombreuses entreprises de haute technologie. Cependant, la question de savoir comment s'interfacer avec les algorithmes existants ou émergents pour effectuer efficacement des analyses comparatives en termes de vitesse, de robustesse et de portabilité reste une question. Dans cet article, une nouvelle plateforme SLAM appelée GSLAM est proposée, qui fournit non seulement des capacités d'évaluation, mais fournit également aux chercheurs un moyen utile de développer rapidement leurs propres systèmes SLAM.

Veuillez noter que cet homme carré fronça les sourcils, pensant à l'identité des « invités non invités » devant lui. Il s’est avéré qu’elle se trouvait dans une situation dangereuse, et une fois qu’elle s’en est rendu compte, elle a rapidement commencé une recherche mentale pour trouver une stratégie pour résoudre le problème. Finalement, elle a décidé de fuir les lieux, de demander de l'aide le plus rapidement possible et d'agir immédiatement. En même temps, la personne de l'autre côté pensait la même chose qu'elle... Il y avait une telle scène dans "Minecraft" où tous les personnages étaient contrôlés par l'intelligence artificielle. Chacun d’eux a un cadre identitaire unique. Par exemple, la jeune fille mentionnée précédemment est une coursière de 17 ans mais intelligente et courageuse. Ils ont la capacité de se souvenir, de penser et de vivre comme des humains dans cette petite ville de Minecraft. Ce qui les anime est une toute nouvelle,

Le modèle GPT-4o publié par OpenAI constitue sans aucun doute une énorme avancée, notamment dans sa capacité à traiter plusieurs supports d'entrée (texte, audio, images) et à générer la sortie correspondante. Cette capacité rend l’interaction homme-machine plus naturelle et intuitive, améliorant considérablement l’aspect pratique et la convivialité de l’IA. Plusieurs points forts de GPT-4o incluent : une évolutivité élevée, des entrées et sorties multimédias, de nouvelles améliorations des capacités de compréhension du langage naturel, etc. 1. Entrée/sortie multimédia : GPT-4o+ peut accepter n'importe quelle combinaison de texte, d'audio et d'images en entrée et générer directement une sortie à partir de ces médias. Cela brise les limites des modèles d’IA traditionnels qui ne traitent qu’un seul type d’entrée, rendant ainsi l’interaction homme-machine plus flexible et plus diversifiée. Cette innovation contribue à alimenter les assistants intelligents
