


Comment utiliser la technologie IA pour restaurer d'anciennes photos (avec exemples et analyse de code)
La restauration de photos anciennes est une méthode d'utilisation de la technologie de l'intelligence artificielle pour réparer, améliorer et améliorer les anciennes photos. Grâce à des algorithmes de vision par ordinateur et d’apprentissage automatique, la technologie peut identifier et réparer automatiquement les dommages et les imperfections des anciennes photos, les rendant ainsi plus claires, plus naturelles et plus réalistes.
Les principes techniques de la restauration de photos anciennes comprennent principalement les aspects suivants :
1. Débruitage et amélioration de l'image
Lors de la restauration de photos anciennes, elles doivent d'abord être débruitées et améliorées. Des algorithmes et des filtres de traitement d'image, tels que le filtrage moyen, le filtrage gaussien, le filtrage bilatéral, etc., peuvent être utilisés pour résoudre les problèmes de bruit et de taches de couleur, améliorant ainsi la qualité des photos.
2. Restauration et réparation d'images
Dans les anciennes photos, il peut y avoir certains défauts et dommages, tels que des rayures, des fissures, une décoloration, etc. Ces problèmes peuvent être résolus par des algorithmes de restauration et de réparation d’images. Les algorithmes couramment utilisés incluent les algorithmes de réparation d'images basés sur la texture, les algorithmes de réparation d'images basés sur les régions, les algorithmes de réparation d'images basés sur l'interpolation, etc. Ces algorithmes peuvent restaurer automatiquement les parties manquantes d'une photo en apprenant les modèles et les caractéristiques des pixels environnants.
2. Reconstruction d'image et super-résolution
Pour certaines anciennes photos avec une résolution inférieure, leur clarté et leurs détails peuvent être améliorés grâce à la reconstruction d'image et aux algorithmes de super-résolution. Ceci peut être réalisé en utilisant des réseaux d'apprentissage profond et des réseaux de neurones convolutifs, tels que SRCNN, ESPCN, SRGAN, etc. Ces algorithmes peuvent automatiquement convertir des images basse résolution en images haute résolution en apprenant la relation de mappage entre les images haute résolution et les images basse résolution.
3. Restauration et correction des couleurs
Les anciennes photos peuvent également présenter des problèmes de distorsion et de décoloration, qui nécessitent une restauration et une correction des couleurs. Ceci peut être réalisé en utilisant des algorithmes de balance des couleurs et de balance des blancs automatique, tels que des algorithmes de balance des blancs automatiques basés sur des hypothèses mondiales en niveaux de gris, des algorithmes de balance des couleurs basés sur l'égalisation d'histogramme, etc. Ces algorithmes peuvent ajuster automatiquement la répartition des couleurs et la luminosité d’une image pour lui donner un aspect plus naturel et réaliste.
Ce qui suit est un exemple de code pour la restauration de photos anciennes à l'aide de Python et de la bibliothèque OpenCV :
import cv2 # 读取老照片 img = cv2.imread('old_photo.jpg') # 图像去噪和增强 img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21) img = cv2.equalizeHist(img) # 图像修复 mask = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) mask = cv2.threshold(mask, 220, 255, cv2.THRESH_BINARY)[1] kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) mask = cv2.erode(mask, None, iterations=4) mask = cv2.dilate(mask, None, iterations=4) mask = cv2.medianBlur(mask, 9) img = cv2.inpaint(img, mask, 3, cv2.INPAINT_TELEA) # 图像重建和超分辨率 sr = cv2.dnn_superres.DnnSuperResImpl_create() sr.readModel('espcn_x3.pb') sr.setModel('espcn', 3) img = sr.upsample(img) # 颜色还原和校正 img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) img = cv2.split(img) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) img[0] = clahe.apply(img[0]) img = cv2.merge(img) img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR) # 显示修复后的照片 cv2.imshow('Restored Image', img) cv2.waitKey(0) cv2.destroyAllWindows()
Ce code utilise diverses fonctions et algorithmes de traitement d'images de la bibliothèque OpenCV pour implémenter différentes étapes de restauration de photos anciennes. Plus précisément, le code utilise la fonction fastNlMeansDenoisingColored() et la fonction égalizeHist() pour le débruitage et l'amélioration de l'image, la fonction inpaint() pour la réparation de l'image, ainsi que la fonction DnnSuperResImpl_create() et la fonction upsample() pour la reconstruction et la résolution de l'image, et utilisé la fonction createCLAHE() et la fonction apply() pour la restauration et la correction des couleurs.
Parmi eux, la partie réparation d'image utilise un algorithme de réparation d'image basé sur la région, qui réalise la réparation du bruit et des défauts des photos en construisant des masques, en effectuant des opérations morphologiques et un filtrage médian. La partie reconstruction d'image et super-résolution utilise l'algorithme ESPCN pour convertir les images basse résolution en images haute résolution, améliorant ainsi la clarté et les détails des photos. La partie restauration et correction des couleurs utilise une méthode de balance des couleurs basée sur l'algorithme CLAHE pour convertir l'image en espace colorimétrique LAB et appliquer l'algorithme CLAHE sur le canal de luminosité pour la restauration et la correction des couleurs.
Dans les applications pratiques, il est nécessaire de choisir l'algorithme et les paramètres appropriés en fonction de la situation spécifique et des besoins de la photo pour obtenir les meilleurs résultats.
En bref, la restauration de photos anciennes est une technologie de traitement d'image complexe qui nécessite une combinaison de plusieurs algorithmes et technologies pour être réalisée. Dans les applications pratiques, il est nécessaire de sélectionner des algorithmes et des paramètres appropriés en fonction des conditions et des besoins spécifiques de la photo pour obtenir les meilleurs résultats.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g
