Maison Périphériques technologiques IA Comment créer un réseau neuronal à l'aide de TensorFlow

Comment créer un réseau neuronal à l'aide de TensorFlow

Jan 24, 2024 pm 10:39 PM
réseau de neurones artificiels

Comment créer un réseau neuronal à laide de TensorFlow

TensorFlow est un framework d'apprentissage automatique populaire utilisé pour former et déployer divers réseaux de neurones. Cet article explique comment utiliser TensorFlow pour créer un réseau neuronal simple et fournit un exemple de code pour vous aider à démarrer.

La première étape dans la construction d'un réseau de neurones consiste à définir la structure du réseau. Dans TensorFlow, nous pouvons utiliser le module tf.keras pour définir les couches d'un réseau de neurones. L'exemple de code suivant définit un réseau neuronal à réaction entièrement connecté avec deux couches cachées et une couche de sortie : ```python importer tensorflow astf modèle = tf.keras.models.Sequential([ tf.keras.layers.Dense(units=64, activation='relu', input_shape=(input_dim,)), tf.keras.layers.Dense(units=32, activation='relu'), tf.keras.layers.Dense(units=output_dim, activation='softmax') ]) ``` Dans le code ci-dessus, nous utilisons le modèle « Séquentiel » pour construire le réseau neuronal. La couche « Dense » représente une couche entièrement connectée, spécifiant le nombre de neurones (unités) et la fonction d'activation (activation) de chaque couche. La forme d'entrée de la première couche cachée est donnée par `input_shape

import tensorflow as tf

model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])
Copier après la connexion

Dans cet exemple, nous utilisons le modèle séquentiel pour définir notre réseau neuronal. Il s'agit d'un modèle d'empilement simple dans lequel chaque couche s'appuie sur la couche précédente. Nous définissons trois couches, la première et la deuxième couches sont toutes deux des couches entièrement connectées avec 64 neurones et utilisent la fonction d'activation ReLU. La forme de la couche d'entrée est (784), car nous utiliserons l'ensemble de données de chiffres manuscrits MNIST, et chaque image de cet ensemble de données mesure 28 x 28 pixels, qui s'étend jusqu'à 784 pixels. La dernière couche est une couche entièrement connectée avec 10 neurones qui utilise une fonction d'activation softmax et est utilisée pour les tâches de classification telles que la classification des chiffres dans l'ensemble de données MNIST.

Nous devons compiler le modèle et spécifier l'optimiseur, la fonction de perte et les métriques d'évaluation. Voici l'exemple :

model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
Copier après la connexion

Dans cet exemple, nous utilisons l'optimiseur Adam pour entraîner notre modèle en utilisant l'entropie croisée comme fonction de perte pour un problème de classification multi-classes. Nous avons également spécifié la précision comme mesure d'évaluation pour suivre les performances du modèle pendant la formation et l'évaluation.

Maintenant que nous avons défini la structure et la configuration d'entraînement du modèle, nous pouvons lire les données et commencer à entraîner le modèle. Nous utiliserons l'ensemble de données de chiffres manuscrits MNIST comme exemple. Voici l'exemple de code :

from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 784))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 784))
test_images = test_images.astype('float32') / 255

train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)

model.fit(train_images, train_labels, epochs=5, batch_size=64)
Copier après la connexion

Dans cet exemple, nous utilisons la fonction mnist.load_data() pour charger l'ensemble de données MNIST. Nous avons ensuite aplati les images d'entraînement et de test à 784 pixels et mis à l'échelle les valeurs des pixels pour qu'elles soient comprises entre 0 et 1. Nous encodons également les étiquettes à chaud afin de les convertir en tâche de classification. Enfin, nous utilisons la fonction d'ajustement pour entraîner notre modèle, en utilisant des images et des étiquettes d'entraînement, en spécifiant un entraînement pour 5 époques, en utilisant 64 échantillons pour chaque époque.

Une fois la formation terminée, nous pouvons utiliser la fonction d'évaluation pour évaluer les performances du modèle sur l'ensemble de test :

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
Copier après la connexion

Dans cet exemple, nous appelons la fonction d'évaluation avec l'image et l'étiquette de test, et imprimons les résultats pour afficher les performances du modèle sur la précision de l'ensemble de test sur l'ensemble.

Ceci est un exemple simple de la façon de créer et de former un réseau neuronal à l'aide de TensorFlow. Bien entendu, dans les applications réelles, vous aurez peut-être besoin de structures de réseau et d’ensembles de données plus complexes. Cependant, cet exemple constitue un bon point de départ pour vous aider à comprendre l'utilisation de base de TensorFlow.

L'exemple de code complet est le suivant :

import tensorflow as tf
from tensorflow.keras.datasets import mnist

# Define the model architecture
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# Compile the model
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# Load the data
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 784))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 784))
test_images = test_images.astype('float32') / 255

train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)

# Train the model
model.fit(train_images, train_labels, epochs=5, batch_size=64)

# Evaluate the model
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
Copier après la connexion

Ce qui précède est l'exemple de code pour créer un réseau neuronal à l'aide de TensorFlow, qui définit un réseau neuronal à réaction entièrement connecté contenant deux couches cachées et une couche de sortie, à l'aide de MNIST. données numériques manuscrites L'ensemble est formé et testé à l'aide de l'optimiseur Adam et de la fonction de perte d'entropie croisée. Le résultat final est la précision de l’ensemble de test.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Explorez les concepts, les différences, les avantages et les inconvénients de RNN, LSTM et GRU Explorez les concepts, les différences, les avantages et les inconvénients de RNN, LSTM et GRU Jan 22, 2024 pm 07:51 PM

Dans les données de séries chronologiques, il existe des dépendances entre les observations, elles ne sont donc pas indépendantes les unes des autres. Cependant, les réseaux de neurones traditionnels traitent chaque observation comme indépendante, ce qui limite la capacité du modèle à modéliser des données de séries chronologiques. Pour résoudre ce problème, le réseau neuronal récurrent (RNN) a été introduit, qui a introduit le concept de mémoire pour capturer les caractéristiques dynamiques des données de séries chronologiques en établissant des dépendances entre les points de données du réseau. Grâce à des connexions récurrentes, RNN peut transmettre des informations antérieures à l'observation actuelle pour mieux prédire les valeurs futures. Cela fait de RNN un outil puissant pour les tâches impliquant des données de séries chronologiques. Mais comment RNN parvient-il à obtenir ce type de mémoire ? RNN réalise la mémoire via la boucle de rétroaction dans le réseau neuronal. C'est la différence entre RNN et le réseau neuronal traditionnel.

Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Jan 24, 2024 am 10:36 AM

Le modèle LSTM bidirectionnel est un réseau neuronal utilisé pour la classification de texte. Vous trouverez ci-dessous un exemple simple montrant comment utiliser le LSTM bidirectionnel pour les tâches de classification de texte. Tout d'abord, nous devons importer les bibliothèques et modules requis : importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Calcul des opérandes à virgule flottante (FLOPS) pour les réseaux de neurones Calcul des opérandes à virgule flottante (FLOPS) pour les réseaux de neurones Jan 22, 2024 pm 07:21 PM

FLOPS est l'une des normes d'évaluation des performances informatiques, utilisée pour mesurer le nombre d'opérations en virgule flottante par seconde. Dans les réseaux de neurones, FLOPS est souvent utilisé pour évaluer la complexité informatique du modèle et l'utilisation des ressources informatiques. C'est un indicateur important utilisé pour mesurer la puissance de calcul et l'efficacité d'un ordinateur. Un réseau de neurones est un modèle complexe composé de plusieurs couches de neurones utilisées pour des tâches telles que la classification, la régression et le clustering des données. La formation et l'inférence des réseaux de neurones nécessitent un grand nombre de multiplications matricielles, de convolutions et d'autres opérations de calcul, la complexité de calcul est donc très élevée. FLOPS (FloatingPointOperationsperSecond) peut être utilisé pour mesurer la complexité de calcul des réseaux de neurones afin d'évaluer l'efficacité d'utilisation des ressources de calcul du modèle. FIASCO

Introduction à SqueezeNet et ses caractéristiques Introduction à SqueezeNet et ses caractéristiques Jan 22, 2024 pm 07:15 PM

SqueezeNet est un algorithme petit et précis qui établit un bon équilibre entre haute précision et faible complexité, ce qui le rend idéal pour les systèmes mobiles et embarqués aux ressources limitées. En 2016, des chercheurs de DeepScale, de l'Université de Californie à Berkeley et de l'Université de Stanford ont proposé SqueezeNet, un réseau neuronal convolutif (CNN) compact et efficace. Ces dernières années, les chercheurs ont apporté plusieurs améliorations à SqueezeNet, notamment SqueezeNetv1.1 et SqueezeNetv2.0. Les améliorations apportées aux deux versions augmentent non seulement la précision, mais réduisent également les coûts de calcul. Précision de SqueezeNetv1.1 sur l'ensemble de données ImageNet

Définition et analyse structurelle du réseau neuronal flou Définition et analyse structurelle du réseau neuronal flou Jan 22, 2024 pm 09:09 PM

Le réseau de neurones flous est un modèle hybride qui combine la logique floue et les réseaux de neurones pour résoudre des problèmes flous ou incertains difficiles à gérer avec les réseaux de neurones traditionnels. Sa conception s'inspire du flou et de l'incertitude de la cognition humaine, c'est pourquoi il est largement utilisé dans les systèmes de contrôle, la reconnaissance de formes, l'exploration de données et d'autres domaines. L'architecture de base du réseau neuronal flou se compose d'un sous-système flou et d'un sous-système neuronal. Le sous-système flou utilise la logique floue pour traiter les données d'entrée et les convertir en ensembles flous pour exprimer le flou et l'incertitude des données d'entrée. Le sous-système neuronal utilise des réseaux de neurones pour traiter des ensembles flous pour des tâches telles que la classification, la régression ou le clustering. L'interaction entre le sous-système flou et le sous-système neuronal confère au réseau neuronal flou des capacités de traitement plus puissantes et peut

Débruitage d'image à l'aide de réseaux de neurones convolutifs Débruitage d'image à l'aide de réseaux de neurones convolutifs Jan 23, 2024 pm 11:48 PM

Les réseaux de neurones convolutifs fonctionnent bien dans les tâches de débruitage d'images. Il utilise les filtres appris pour filtrer le bruit et restaurer ainsi l'image originale. Cet article présente en détail la méthode de débruitage d'image basée sur un réseau neuronal convolutif. 1. Présentation du réseau neuronal convolutif Le réseau neuronal convolutif est un algorithme d'apprentissage en profondeur qui utilise une combinaison de plusieurs couches convolutives, des couches de regroupement et des couches entièrement connectées pour apprendre et classer les caractéristiques de l'image. Dans la couche convolutive, les caractéristiques locales de l'image sont extraites via des opérations de convolution, capturant ainsi la corrélation spatiale dans l'image. La couche de pooling réduit la quantité de calcul en réduisant la dimension des fonctionnalités et conserve les principales fonctionnalités. La couche entièrement connectée est responsable du mappage des fonctionnalités et des étiquettes apprises pour mettre en œuvre la classification des images ou d'autres tâches. La conception de cette structure de réseau rend les réseaux de neurones convolutifs utiles dans le traitement et la reconnaissance d'images.

réseau neuronal convolutif causal réseau neuronal convolutif causal Jan 24, 2024 pm 12:42 PM

Le réseau neuronal convolutif causal est un réseau neuronal convolutif spécial conçu pour les problèmes de causalité dans les données de séries chronologiques. Par rapport aux réseaux de neurones convolutifs conventionnels, les réseaux de neurones convolutifs causals présentent des avantages uniques en ce qu'ils conservent la relation causale des séries chronologiques et sont largement utilisés dans la prédiction et l'analyse des données de séries chronologiques. L'idée centrale du réseau neuronal convolutionnel causal est d'introduire la causalité dans l'opération de convolution. Les réseaux neuronaux convolutifs traditionnels peuvent percevoir simultanément les données avant et après le point temporel actuel, mais dans la prévision des séries chronologiques, cela peut entraîner des problèmes de fuite d'informations. Parce que le résultat de la prédiction à l’heure actuelle sera affecté par les données à l’heure future. Le réseau neuronal convolutionnel causal résout ce problème. Il ne peut percevoir que le point temporel actuel et les données précédentes, mais ne peut pas percevoir les données futures.

Réseau de neurones jumeaux : analyse des principes et des applications Réseau de neurones jumeaux : analyse des principes et des applications Jan 24, 2024 pm 04:18 PM

Le réseau neuronal siamois est une structure de réseau neuronal artificiel unique. Il se compose de deux réseaux de neurones identiques partageant les mêmes paramètres et poids. Dans le même temps, les deux réseaux partagent également les mêmes données d’entrée. Cette conception a été inspirée par des jumeaux, car les deux réseaux de neurones sont structurellement identiques. Le principe du réseau neuronal siamois est d'accomplir des tâches spécifiques, telles que la correspondance d'images, la correspondance de textes et la reconnaissance de visages, en comparant la similitude ou la distance entre deux données d'entrée. Pendant la formation, le réseau tente de mapper des données similaires vers des régions adjacentes et des données différentes vers des régions distantes. De cette manière, le réseau peut apprendre à classer ou à faire correspondre différentes données pour obtenir des résultats correspondants.

See all articles