Maison Périphériques technologiques IA Explorez la définition et les caractéristiques du modèle profond Rbf

Explorez la définition et les caractéristiques du modèle profond Rbf

Jan 25, 2024 am 09:36 AM
深度学习 réseau de neurones artificiels

Explorez la définition et les caractéristiques du modèle profond Rbf

RBF est un modèle non linéaire basé sur des réseaux de neurones, comprenant une couche d'entrée, une couche cachée et une couche de sortie, et est largement utilisé dans l'apprentissage profond. Il a été proposé pour la première fois en 1988 et possède une structure de réseau avancé.

Le modèle RBF est basé sur une fonction de base radiale comme fonction d'activation de la couche cachée, utilisant généralement la fonction gaussienne ou d'autres fonctions. Les fonctions de base radiale sont une forme fonctionnelle courante.

phi(x) = e^{-gamma|x - c|^2}

La fonction de cette fonction est de mapper le vecteur d'entrée x à un espace de grande dimension via la fonction de base radiale. Parmi eux, c représente le centre du neurone de la couche cachée, gamma représente le paramètre de bande passante de la fonction de base radiale et |cdot| représente la longueur du module du vecteur. Les fonctions de base radiale sont locales et ne fonctionnent qu'à proximité du centre. Ce mappage peut faciliter la séparation des données d'entrée dans un espace de grande dimension.

Le processus de formation du modèle RBF est divisé en deux étapes : la sélection du centre et la détermination des paramètres. Tout d’abord, lors de la phase de sélection du centre, nous devons déterminer le centre du neurone de la couche cachée. Cette étape peut être réalisée à l'aide d'un algorithme de clustering, tel que l'algorithme K-Means, ou d'autres méthodes. Ensuite, lors de l’étape de détermination des paramètres, nous devons déterminer les paramètres de bande passante de la fonction de base radiale et le poids de la couche de sortie. Pour réaliser cette étape, la méthode des moindres carrés ou d’autres algorithmes d’optimisation peuvent être utilisés.

Le modèle RBF présente les avantages suivants :

  • Pour les problèmes non linéaires, le modèle RBF est plus performant que le modèle linéaire traditionnel, et sa vitesse d'entraînement est également plus rapide.
  • Par rapport à d'autres modèles d'apprentissage profond, la structure de réseau du modèle RBF est relativement simple, ce qui peut réduire le risque de surajustement.
  • Le modèle RBF a une meilleure interprétabilité car les paramètres centre et bande passante peuvent être compris comme l'importance de la fonctionnalité et la plage d'influence de la fonctionnalité.
  • La vitesse de prédiction du modèle RBF est plus rapide car il lui suffit de calculer la distance entre les données d'entrée et le centre et d'effectuer une simple combinaison linéaire.

Cependant, le modèle RBF présente également quelques inconvénients :

  • Le modèle RBF nécessite un réglage manuel du centre des neurones de la couche cachée et des paramètres de bande passante de la fonction de base radiale, ce qui nécessite une certaine expérience et compétences .
  • Le processus de formation du modèle RBF est relativement complexe, nécessitant deux étapes de sélection du centre et de détermination des paramètres, ainsi que l'utilisation de certains algorithmes d'optimisation.
  • Le modèle RBF n'est peut-être pas très efficace pour traiter des données de grande dimension, car dans un espace de grande dimension, la distance entre les points de données est souvent faible, ce qui rendra l'effet de la fonction de base radiale moins évident.

En général, le modèle RBF est un modèle d'apprentissage en profondeur simple et efficace qui fonctionne bien dans la gestion des problèmes non linéaires et a une bonne interprétabilité et vitesse de prédiction. Cependant, le processus de formation du modèle RBF est relativement compliqué, nécessitant deux étapes de sélection du centre et de détermination des paramètres. En même temps, l'effet du traitement des données de grande dimension peut ne pas être très bon. nécessaire de sélectionner un modèle approprié en fonction de problèmes spécifiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées May 30, 2024 am 09:35 AM

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Mar 02, 2024 am 11:19 AM

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

Super fort! Top 10 des algorithmes de deep learning ! Super fort! Top 10 des algorithmes de deep learning ! Mar 15, 2024 pm 03:46 PM

Près de 20 ans se sont écoulés depuis que le concept d'apprentissage profond a été proposé en 2006. L'apprentissage profond, en tant que révolution dans le domaine de l'intelligence artificielle, a donné naissance à de nombreux algorithmes influents. Alors, selon vous, quels sont les 10 meilleurs algorithmes pour l’apprentissage profond ? Voici les meilleurs algorithmes d’apprentissage profond, à mon avis. Ils occupent tous une position importante en termes d’innovation, de valeur d’application et d’influence. 1. Contexte du réseau neuronal profond (DNN) : Le réseau neuronal profond (DNN), également appelé perceptron multicouche, est l'algorithme d'apprentissage profond le plus courant lorsqu'il a été inventé pour la première fois, jusqu'à récemment en raison du goulot d'étranglement de la puissance de calcul. années, puissance de calcul, La percée est venue avec l'explosion des données. DNN est un modèle de réseau neuronal qui contient plusieurs couches cachées. Dans ce modèle, chaque couche transmet l'entrée à la couche suivante et

Comment utiliser les modèles hybrides CNN et Transformer pour améliorer les performances Comment utiliser les modèles hybrides CNN et Transformer pour améliorer les performances Jan 24, 2024 am 10:33 AM

Convolutional Neural Network (CNN) et Transformer sont deux modèles d'apprentissage en profondeur différents qui ont montré d'excellentes performances sur différentes tâches. CNN est principalement utilisé pour les tâches de vision par ordinateur telles que la classification d'images, la détection de cibles et la segmentation d'images. Il extrait les caractéristiques locales de l'image via des opérations de convolution et effectue une réduction de dimensionnalité des caractéristiques et une invariance spatiale via des opérations de pooling. En revanche, Transformer est principalement utilisé pour les tâches de traitement du langage naturel (NLP) telles que la traduction automatique, la classification de texte et la reconnaissance vocale. Il utilise un mécanisme d'auto-attention pour modéliser les dépendances dans des séquences, évitant ainsi le calcul séquentiel dans les réseaux neuronaux récurrents traditionnels. Bien que ces deux modèles soient utilisés pour des tâches différentes, ils présentent des similitudes dans la modélisation des séquences.

Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Une étude de cas sur l'utilisation du modèle LSTM bidirectionnel pour la classification de texte Jan 24, 2024 am 10:36 AM

Le modèle LSTM bidirectionnel est un réseau neuronal utilisé pour la classification de texte. Vous trouverez ci-dessous un exemple simple montrant comment utiliser le LSTM bidirectionnel pour les tâches de classification de texte. Tout d'abord, nous devons importer les bibliothèques et modules requis : importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Réseau de neurones jumeaux : analyse des principes et des applications Réseau de neurones jumeaux : analyse des principes et des applications Jan 24, 2024 pm 04:18 PM

Le réseau neuronal siamois est une structure de réseau neuronal artificiel unique. Il se compose de deux réseaux de neurones identiques partageant les mêmes paramètres et poids. Dans le même temps, les deux réseaux partagent également les mêmes données d’entrée. Cette conception a été inspirée par des jumeaux, car les deux réseaux de neurones sont structurellement identiques. Le principe du réseau neuronal siamois est d'accomplir des tâches spécifiques, telles que la correspondance d'images, la correspondance de textes et la reconnaissance de visages, en comparant la similitude ou la distance entre deux données d'entrée. Pendant la formation, le réseau tente de mapper des données similaires vers des régions adjacentes et des données différentes vers des régions distantes. De cette manière, le réseau peut apprendre à classer ou à faire correspondre différentes données pour obtenir des résultats correspondants.

réseau neuronal convolutif causal réseau neuronal convolutif causal Jan 24, 2024 pm 12:42 PM

Le réseau neuronal convolutif causal est un réseau neuronal convolutif spécial conçu pour les problèmes de causalité dans les données de séries chronologiques. Par rapport aux réseaux de neurones convolutifs conventionnels, les réseaux de neurones convolutifs causals présentent des avantages uniques en ce qu'ils conservent la relation causale des séries chronologiques et sont largement utilisés dans la prédiction et l'analyse des données de séries chronologiques. L'idée centrale du réseau neuronal convolutionnel causal est d'introduire la causalité dans l'opération de convolution. Les réseaux neuronaux convolutifs traditionnels peuvent percevoir simultanément les données avant et après le point temporel actuel, mais dans la prévision des séries chronologiques, cela peut entraîner des problèmes de fuite d'informations. Parce que le résultat de la prédiction à l’heure actuelle sera affecté par les données à l’heure future. Le réseau neuronal convolutionnel causal résout ce problème. Il ne peut percevoir que le point temporel actuel et les données précédentes, mais ne peut pas percevoir les données futures.

AlphaFold 3 est lancé, prédisant de manière exhaustive les interactions et les structures des protéines et de toutes les molécules de la vie, avec une précision bien plus grande que jamais AlphaFold 3 est lancé, prédisant de manière exhaustive les interactions et les structures des protéines et de toutes les molécules de la vie, avec une précision bien plus grande que jamais Jul 16, 2024 am 12:08 AM

Editeur | Radis Skin Depuis la sortie du puissant AlphaFold2 en 2021, les scientifiques utilisent des modèles de prédiction de la structure des protéines pour cartographier diverses structures protéiques dans les cellules, découvrir des médicaments et dresser une « carte cosmique » de chaque interaction protéique connue. Tout à l'heure, Google DeepMind a publié le modèle AlphaFold3, capable d'effectuer des prédictions de structure conjointe pour des complexes comprenant des protéines, des acides nucléiques, de petites molécules, des ions et des résidus modifiés. La précision d’AlphaFold3 a été considérablement améliorée par rapport à de nombreux outils dédiés dans le passé (interaction protéine-ligand, interaction protéine-acide nucléique, prédiction anticorps-antigène). Cela montre qu’au sein d’un cadre unique et unifié d’apprentissage profond, il est possible de réaliser

See all articles