Table des matières
À quoi ressemble Yi-VL ?
Au-delà d'une série de grands modèles multimodaux
Maison Périphériques technologiques IA Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Jan 25, 2024 am 11:09 AM
模型 训练

En tête des deux listes faisant autorité en chinois et en anglais, Kai-Fu Lee a remis la grand modèle multimodalfeuille de réponses !

Cela fait moins de trois mois depuis la sortie de ses premiers grands modèles open source Yi-34B et Yi-6B.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Le modèle s'appelle Yi Vision Language (Yi-VL), et il est désormais officiellement open source à l'échelle mondiale.

Les deux appartiennent à la série Yi et ont également deux versions :

Yi-VL-34B et Yi-VL-6B.

Jetons d'abord un coup d'œil à deux exemples pour découvrir les performances de Yi-VL dans divers scénarios tels que des dialogues graphiques :

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Yi-VL a fait une analyse détaillée de l'ensemble de l'image, expliquant non seulement le contenu et même le "plafond" sont pris en charge.

En chinois, Yi-VL peut également exprimer clairement et précisément :

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

De plus, les résultats officiels des tests ont également été donnés.

Yi-VL-34B a une précision de 41,6% sur l'ensemble de données anglais MMMU, juste derrière GPT-4V avec une précision de 55,7%, surpassant une série de grands modèles multimodaux.

Sur l'ensemble de données chinois CMMMU, la précision du Yi-VL-34B est de 36,5%, ce qui est en avance sur les modèles multimodaux open source de pointe actuels.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

À quoi ressemble Yi-VL ?

Yi-VL est développé sur la base du modèle de langage Yi. Vous pouvez voir les puissantes capacités de compréhension de texte basées sur le modèle de langage Yi. Il vous suffit d'aligner les images pour obtenir un bon modèle de langage visuel multimodal. le modèle Yi-VL, l'un des principaux points forts.

Dans conception d'architecture, le modèle Yi-VL est basé sur l'architecture open source LLaVA et contient trois modules principaux :

  • Vision Transformer (appelé ViT) pour l'encodage d'images, en utilisant l'open source OpenClip ViT -Modèle H/14 Initialisez les paramètres entraînables et apprenez à extraire des caractéristiques de paires « image-texte » à grande échelle, donnant au modèle la capacité de traiter et de comprendre les images.
  • Le module Projection offre la possibilité d'aligner spatialement les caractéristiques de l'image et les caractéristiques du texte sur le modèle. Ce module est constitué d'un perceptron multicouche (MLP) contenant des normalisations de couches . Cette conception permet au modèle de fusionner et de traiter plus efficacement les informations visuelles et textuelles, améliorant ainsi la précision de la compréhension et de la génération multimodales. L'introduction des grands modèles linguistiques Yi-34B-Chat et Yi-6B-Chat fournit à Yi-VL de puissantes capacités de compréhension et de génération du langage. Cette partie du modèle utilise une technologie avancée de traitement du langage naturel pour aider Yi-VL à comprendre en profondeur les structures linguistiques complexes et à générer une sortie de texte cohérente et pertinente.
Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.△Illustration : Conception de l'architecture du modèle Yi-VL et aperçu du processus de la méthode de formation

Dans la

méthode de formation

, le processus de formation du modèle Yi-VL est divisé en trois étapes, visant à améliorer globalement le visuel et qualité visuelle du modèle Capacité de traitement du langage. Dans la première étape, un ensemble de données couplées « image-texte » de 100 millions est utilisé pour entraîner les modules ViT et Projection.

À ce stade, la résolution de l'image est réglée sur 224x224 pour améliorer les capacités d'acquisition de connaissances de ViT dans des architectures spécifiques tout en obtenant un alignement efficace avec de grands modèles de langage.

Dans la deuxième étape, la résolution de l'image de ViT est augmentée à 448x448, ce qui permet au modèle de mieux reconnaître les détails visuels complexes. Environ 25 millions de paires « image-texte » sont utilisées à cette étape.

Dans la troisième étape, les paramètres de l'ensemble du modèle sont ouverts à la formation, dans le but d'améliorer les performances du modèle dans l'interaction de chat multimodale. Les données de formation couvrent diverses sources de données, avec un total d'environ 1 million de paires « image-texte », garantissant l'étendue et l'équilibre des données.

L'équipe technique de Zero-One Everything a également vérifié qu'elle pouvait rapidement entraîner une compréhension efficace des images et des graphiques fluides en s'appuyant sur les puissantes capacités de compréhension du langage et de génération du modèle de langage Yi en utilisant d'autres méthodes de formation multimodales telles que BLIP, Flamingo, EVA, etc. Un modèle graphique-texte multimodal pour le dialogue textuel.

Les modèles de la série Yi peuvent être utilisés comme modèles de langage de base pour les modèles multimodaux, offrant ainsi une nouvelle option à la communauté open source. Dans le même temps, l'équipe multimodale zéro-un explore la pré-formation multimodale à partir de zéro pour approcher et dépasser le GPT-4V plus rapidement et atteindre le premier niveau d'échelon mondial.

Actuellement, le modèle Yi-VL a été ouvert au public sur des plateformes telles que Hugging Face et ModelScope. Les utilisateurs peuvent personnellement expérimenter les performances de ce modèle dans divers scénarios tels que des dialogues graphiques et textuels.

Au-delà d'une série de grands modèles multimodaux

Dans le nouveau benchmark multimodal MMMU, les deux versions Yi-VL-34B et Yi-VL-6B ont bien fonctionné.

MMMU (Nom complet : Massive Multi-discipline Multi-modal Understanding & Reasoning)L'ensemble de données contient 11 500 sujets issus de six disciplines principales (art et design, commerce, sciences, santé et médecine, sciences humaines et sociales, et technologie et ingénierie) des problèmes impliquant des types d'images très hétérogènes et des informations texte-image entrelacées imposent des exigences extrêmement élevées aux capacités avancées de perception et de raisonnement du modèle.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Et Yi-VL-34B a surpassé avec succès une série de grands modèles multimodaux avec une précision de 41,6% sur cet ensemble de test, juste derrière le GPT-4V(55,7%), montrant une puissante capacité à comprendre et appliquer des connaissances interdisciplinaires.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

De même, sur l'ensemble de données CMMMU créé pour la scène chinoise, le modèle Yi-VL montre l'avantage unique de « mieux comprendre les Chinois ».

CMMMU contient environ 12 000 questions multimodales chinoises dérivées d'examens universitaires, de quiz et de manuels.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Parmi eux, GPT-4V a une précision de 43,7 % sur cet ensemble de tests, suivi de Yi-VL-34B avec une précision de 36,5 %, ce qui est en avance sur l'actuel multimodal open source de pointe. des modèles.

Kai-Fu Lee a participé à Zero One Wish, qui a publié un grand modèle multimodal open source de classe mondiale.

Adresse du projet :
[1]https://huggingface.co/01-ai

[2]https://www.modelscope.cn/organization/01ai

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Open source! Au-delà de ZoeDepth ! DepthFM : estimation rapide et précise de la profondeur monoculaire ! Open source! Au-delà de ZoeDepth ! DepthFM : estimation rapide et précise de la profondeur monoculaire ! Apr 03, 2024 pm 12:04 PM

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Le modèle MoE open source le plus puissant au monde est ici, avec des capacités chinoises comparables à celles du GPT-4, et le prix ne représente que près d'un pour cent de celui du GPT-4-Turbo. Le modèle MoE open source le plus puissant au monde est ici, avec des capacités chinoises comparables à celles du GPT-4, et le prix ne représente que près d'un pour cent de celui du GPT-4-Turbo. May 07, 2024 pm 04:13 PM

Imaginez un modèle d'intelligence artificielle qui non seulement a la capacité de surpasser l'informatique traditionnelle, mais qui permet également d'obtenir des performances plus efficaces à moindre coût. Ce n'est pas de la science-fiction, DeepSeek-V2[1], le modèle MoE open source le plus puissant au monde est ici. DeepSeek-V2 est un puissant mélange de modèle de langage d'experts (MoE) présentant les caractéristiques d'une formation économique et d'une inférence efficace. Il est constitué de 236B paramètres, dont 21B servent à activer chaque marqueur. Par rapport à DeepSeek67B, DeepSeek-V2 offre des performances plus élevées, tout en économisant 42,5 % des coûts de formation, en réduisant le cache KV de 93,3 % et en augmentant le débit de génération maximal à 5,76 fois. DeepSeek est une entreprise explorant l'intelligence artificielle générale

KAN, qui remplace MLP, a été étendu à la convolution par des projets open source KAN, qui remplace MLP, a été étendu à la convolution par des projets open source Jun 01, 2024 pm 10:03 PM

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

Bonjour, Atlas électrique ! Le robot Boston Dynamics revient à la vie, des mouvements étranges à 180 degrés effraient Musk Bonjour, Atlas électrique ! Le robot Boston Dynamics revient à la vie, des mouvements étranges à 180 degrés effraient Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas entre officiellement dans l’ère des robots électriques ! Hier, l'Atlas hydraulique s'est retiré "en larmes" de la scène de l'histoire. Aujourd'hui, Boston Dynamics a annoncé que l'Atlas électrique était au travail. Il semble que dans le domaine des robots humanoïdes commerciaux, Boston Dynamics soit déterminé à concurrencer Tesla. Après la sortie de la nouvelle vidéo, elle a déjà été visionnée par plus d’un million de personnes en seulement dix heures. Les personnes âgées partent et de nouveaux rôles apparaissent. C'est une nécessité historique. Il ne fait aucun doute que cette année est l’année explosive des robots humanoïdes. Les internautes ont commenté : Les progrès des robots ont fait ressembler la cérémonie d'ouverture de cette année à des êtres humains, et le degré de liberté est bien plus grand que celui des humains. Mais n'est-ce vraiment pas un film d'horreur ? Au début de la vidéo, Atlas est allongé calmement sur le sol, apparemment sur le dos. Ce qui suit est à couper le souffle

L'IA bouleverse la recherche mathématique ! Le lauréat de la médaille Fields et mathématicien sino-américain a dirigé 11 articles les mieux classés | Aimé par Terence Tao L'IA bouleverse la recherche mathématique ! Le lauréat de la médaille Fields et mathématicien sino-américain a dirigé 11 articles les mieux classés | Aimé par Terence Tao Apr 09, 2024 am 11:52 AM

L’IA change effectivement les mathématiques. Récemment, Tao Zhexuan, qui a prêté une attention particulière à cette question, a transmis le dernier numéro du « Bulletin de l'American Mathematical Society » (Bulletin de l'American Mathematical Society). En se concentrant sur le thème « Les machines changeront-elles les mathématiques ? », de nombreux mathématiciens ont exprimé leurs opinions. L'ensemble du processus a été plein d'étincelles, intense et passionnant. L'auteur dispose d'une équipe solide, comprenant Akshay Venkatesh, lauréat de la médaille Fields, le mathématicien chinois Zheng Lejun, l'informaticien de l'Université de New York Ernest Davis et de nombreux autres universitaires bien connus du secteur. Le monde de l’IA a radicalement changé. Vous savez, bon nombre de ces articles ont été soumis il y a un an.

La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. Apr 29, 2024 pm 06:55 PM

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes Jun 11, 2024 am 09:51 AM

Quoi? Zootopie est-elle concrétisée par l’IA domestique ? Avec la vidéo est exposé un nouveau modèle de génération vidéo domestique à grande échelle appelé « Keling ». Sora utilise une voie technique similaire et combine un certain nombre d'innovations technologiques auto-développées pour produire des vidéos qui comportent non seulement des mouvements larges et raisonnables, mais qui simulent également les caractéristiques du monde physique et possèdent de fortes capacités de combinaison conceptuelle et d'imagination. Selon les données, Keling prend en charge la génération de vidéos ultra-longues allant jusqu'à 2 minutes à 30 ips, avec des résolutions allant jusqu'à 1080p, et prend en charge plusieurs formats d'image. Un autre point important est que Keling n'est pas une démo ou une démonstration de résultats vidéo publiée par le laboratoire, mais une application au niveau produit lancée par Kuaishou, un acteur leader dans le domaine de la vidéo courte. De plus, l'objectif principal est d'être pragmatique, de ne pas faire de chèques en blanc et de se mettre en ligne dès sa sortie. Le grand modèle de Ke Ling est déjà sorti à Kuaiying.

L'US Air Force présente son premier avion de combat IA de grande envergure ! Le ministre a personnellement effectué l'essai routier sans intervenir pendant tout le processus, et 100 000 lignes de code ont été testées 21 fois. L'US Air Force présente son premier avion de combat IA de grande envergure ! Le ministre a personnellement effectué l'essai routier sans intervenir pendant tout le processus, et 100 000 lignes de code ont été testées 21 fois. May 07, 2024 pm 05:00 PM

Récemment, le milieu militaire a été submergé par la nouvelle : les avions de combat militaires américains peuvent désormais mener des combats aériens entièrement automatiques grâce à l'IA. Oui, tout récemment, l’avion de combat IA de l’armée américaine a été rendu public pour la première fois, dévoilant ainsi son mystère. Le nom complet de ce chasseur est Variable Stability Simulator Test Aircraft (VISTA). Il a été personnellement piloté par le secrétaire de l'US Air Force pour simuler une bataille aérienne en tête-à-tête. Le 2 mai, le secrétaire de l'US Air Force, Frank Kendall, a décollé à bord d'un X-62AVISTA à la base aérienne d'Edwards. Notez que pendant le vol d'une heure, toutes les actions de vol ont été effectuées de manière autonome par l'IA ! Kendall a déclaré : "Au cours des dernières décennies, nous avons réfléchi au potentiel illimité du combat air-air autonome, mais cela a toujours semblé hors de portée." Mais maintenant,

See all articles