Clés pour maîtriser les fonctions NumPy : un guide complet
Introduction :
Dans le domaine du calcul scientifique, NumPy est l'une des bibliothèques les plus importantes de Python. Il fournit des objets tableaux multidimensionnels efficaces et de nombreuses fonctions pour travailler avec ces tableaux. Cet article fournira aux lecteurs un guide complet pour les aider à maîtriser les clés des fonctions NumPy. L'article commencera par les bases de NumPy et fournira des exemples de code spécifiques pour aider les lecteurs à mieux comprendre et appliquer ces fonctions.
1. Connaissance de base de NumPy
NumPy est une bibliothèque Python utilisée pour le calcul scientifique. Sa fonction principale est de fournir un objet tableau multidimensionnel efficace. Cet objet tableau multidimensionnel peut stocker le même type de données et peut facilement effectuer diverses opérations de base, telles que l'indexation, le découpage, les opérations matricielles, etc.
Installer NumPy
Pour installer la bibliothèque NumPy, vous pouvez utiliser la commande pip :
pip install numpy
Importer NumPy
Pour utiliser la bibliothèque NumPy, vous devez d'abord l'importer :
import numpy as np
Dans l'exemple de code suivant, nous utiliserons np
qui sert d'alias pour NumPy. np
作为NumPy的别名。
二、NumPy的常用函数
NumPy提供了众多的函数,用于数据处理、数学计算、统计分析等。下面将介绍一些常用的函数,并且通过具体的代码示例进行演示。
数组的创建与操作
创建数组是使用NumPy的基本操作之一。可以通过多种方式创建数组,常用的有np.array()
、np.zeros()
和np.ones()
函数。
arr1 = np.array([1, 2, 3]) # 一维数组 arr2 = np.zeros((2, 3)) # 二维全0数组 arr3 = np.ones((3, 4)) # 二维全1数组
数组的索引和切片
NumPy中的数组索引和切片与Python的标准列表非常类似,可以使用方括号[]
NumPy fournit de nombreuses fonctions pour le traitement des données, les calculs mathématiques, l'analyse statistique, etc. Certaines fonctions couramment utilisées seront présentées ci-dessous et démontrées à travers des exemples de code spécifiques.
La création d'un tableau est l'une des opérations de base de l'utilisation de NumPy. Les tableaux peuvent être créés de plusieurs manières, les plus couramment utilisées incluent np.array()
, np.zeros()
et np.ones()</code > fonctions . <br><div class="code" style="position:relative; padding:0px; margin:0px;"><pre class='brush:python;toolbar:false;'>arr = np.array([1, 2, 3, 4, 5])
print(arr[0]) # 输出第一个元素
print(arr[1:4]) # 输出切片[2, 3, 4]</pre><div class="contentsignin">Copier après la connexion</div></div></p></li><li>Indexation et découpage des tableaux<p>L'indexation et le découpage des tableaux dans NumPy sont très similaires aux listes standard de Python, et vous pouvez utiliser des crochets <code>[]
pour les opérations d'indexation et de découpage.
arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) print(arr1 + arr2) # 输出[5, 7, 9] print(np.dot(arr1, arr2)) # 输出32,两个数组的点积
Les tableaux dans NumPy prennent en charge diverses opérations de calcul, telles que l'addition, la soustraction, la multiplication et la division, etc. Vous pouvez effectuer des opérations directement sur les tableaux ou utiliser les fonctions fournies par NumPy pour les calculs.
arr = np.array([1, 2, 3, 4, 5]) print(np.mean(arr)) # 输出3,数组的平均值 print(np.median(arr)) # 输出3,数组的中位数 print(np.var(arr)) # 输出2,数组的方差 print(np.std(arr)) # 输出1.414,数组的标准差
arr = np.array([1, 2, 3, 4, 5, 6]) print(arr.shape) # 输出(6,),数组的形状 arr_reshape = np.reshape(arr, (3, 2)) print(arr_reshape) # 输出[[1, 2], [3, 4], [5, 6]] arr_transpose = np.transpose(arr_reshape) print(arr_transpose) # 输出[[1, 3, 5], [2, 4, 6]]
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!