


Maîtrisez les fonctions numpy courantes et leurs applications : apprenez les connaissances de base des fonctions numpy
Apprenez les fonctions numpy : maîtrisez les fonctions numpy courantes et leur utilisation, des exemples de code spécifiques sont nécessaires
Python est un langage de programmation puissant largement utilisé dans les domaines de l'analyse de données et du calcul scientifique. Dans ce domaine, numpy est une bibliothèque très importante, qui fournit un grand nombre de fonctions pour travailler avec des tableaux et des matrices. Dans cet article, nous explorerons certaines fonctions numpy couramment utilisées et leur utilisation, et fournirons des exemples de code concrets.
Tout d'abord, nous devons importer la bibliothèque numpy pour utiliser ses fonctions. Avant d'importer, assurez-vous d'avoir correctement installé la bibliothèque numpy. Vous pouvez installer numpy à l'aide de la commande suivante :
pip install numpy
Une fois que vous avez installé numpy avec succès, vous pouvez l'importer dans votre code :
import numpy as np
Ensuite, commençons à apprendre quelques fonctions numpy couramment utilisées et leur utilisation.
- Créer des tableaux
numpy propose plusieurs façons de créer des tableaux. Le moyen le plus simple est d'utiliser la fonctionnp.array
. L'exemple de code suivant crée un tableau unidimensionnel :np.array
函数。以下代码示例创建了一个一维数组:
a = np.array([1, 2, 3, 4, 5]) print(a)
输出结果:
[1 2 3 4 5]
除了使用np.array
函数,还可以使用以下方法创建数组:
np.zeros
:创建一个由0填充的数组;np.ones
:创建一个由1填充的数组;np.arange
:创建一个等差数列数组;np.linspace
:创建一个等间距数列数组;
- 数组操作
numpy提供了许多操作数组的函数。以下是一些常见的函数及其用法。
np.shape
:获取数组的形状;np.ndim
:获取数组的维度;np.size
:获取数组的大小;np.reshape
:改变数组的形状;np.concatenate
:连接两个数组;np.split
:将一个数组分成多个子数组;
以下代码示例演示了一些数组操作的用法:
a = np.array([[1, 2, 3], [4, 5, 6]]) print(np.shape(a)) # 输出(2, 3) print(np.ndim(a)) # 输出2 print(np.size(a)) # 输出6 b = np.reshape(a, (3, 2)) print(b)
输出结果:
[[1 2] [3 4] [5 6]]
- 数学运算
numpy提供了丰富的数学函数,用于对数组进行计算。以下是一些常见的数学函数及其用法。
np.sum
:计算数组元素的总和;np.mean
:计算数组元素的平均值;np.max
:找到数组中的最大值;np.min
:找到数组中的最小值;np.sin
:计算数组元素的正弦值;np.cos
:计算数组元素的余弦值;
以下代码示例演示了一些数学运算的用法:
a = np.array([1, 2, 3, 4, 5]) print(np.sum(a)) # 输出15 print(np.mean(a)) # 输出3.0 print(np.max(a)) # 输出5 print(np.min(a)) # 输出1 b = np.sin(a) print(b)
输出结果:
[ 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427]
- 矩阵运算
除了对数组进行数学运算,numpy还提供了丰富的矩阵运算函数。以下是一些常见的矩阵运算函数及其用法。
np.dot
:计算两个矩阵的点积;np.transpose
:矩阵转置;np.linalg.inv
:计算矩阵的逆;np.linalg.det
:计算矩阵的行列式;np.linalg.solve
a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) c = np.dot(a, b) print(c) d = np.transpose(a) print(d) e = np.linalg.inv(a) print(e) f = np.linalg.det(b) print(f) x = np.array([[1, 2], [3, 4]]) y = np.array([5, 6]) z = np.linalg.solve(x, y) print(z)
Copier après la connexion Résultat :
[[19 22] [43 50]] [[1 3] [2 4]] [[-2. 1. ] [ 1.5 -0.5]] -2.000000000000002 [-4. 4.5]
En plus d'utiliser la fonction np.array
, vous pouvez également créer un tableau à l'aide des méthodes suivantes :
np.zeros
: Créez un tableau rempli de 0 ;
np.ones
: Créez un tableau rempli de 1
np ; .arange
code> : Créez un tableau de séquences équidistantes ; 🎜🎜np.linspace
: Créez un tableau de séquences équidistantes 🎜🎜- 🎜Array ; Operations🎜numpy fournit de nombreuses opérations sur les tableaux La fonction. Vous trouverez ci-dessous quelques fonctions courantes et leur utilisation. 🎜
- 🎜
np.shape
: Obtenez la forme du tableau ; 🎜🎜np.ndim
: Obtenez les dimensions du tableau 🎜🎜np.size : Obtenez la taille du tableau ; 🎜🎜np.reshape
: Changez la forme du tableau ; 🎜🎜np.concatenate
: Connectez deux tableaux ; 🎜🎜np.split : divisez un tableau en plusieurs sous-tableaux ; 🎜🎜🎜L'exemple de code suivant montre l'utilisation de certaines opérations sur les tableaux : 🎜rrreee🎜Résultats de sortie : 🎜rrreee- 🎜Opérations mathématiques🎜Numpy fournit un riche ensemble de fonctions mathématiques pour effectuer des calculs sur des tableaux. Voici quelques fonctions mathématiques courantes et leurs utilisations. 🎜
- 🎜
np.sum
: Calculez la somme des éléments du tableau ; 🎜🎜np.mean
: Calculez la moyenne des éléments du tableau ; code >np.max : Trouver la valeur maximale dans le tableau ; 🎜🎜np.min
: Trouver la valeur minimale dans le tableau ; 🎜🎜np.sin
; > : Calculer la valeur sinusoïdale de l'élément du tableau ; 🎜🎜np.cos
: Calculer la valeur cosinusoïdale de l'élément du tableau ; 🎜🎜🎜L'exemple de code suivant démontre l'utilisation de certaines opérations mathématiques : 🎜rrreee 🎜Résultat de sortie : 🎜rrreee- 🎜Opérations matricielles🎜En plus d'effectuer des opérations mathématiques sur les tableaux, numpy fournit également une multitude de fonctions d'opérations matricielles. Voici quelques fonctions d’opération matricielle courantes et leur utilisation. 🎜
- 🎜
np.dot
: Calculer le produit scalaire de deux matrices 🎜🎜np.transpose
: Transposition matricielle 🎜🎜 np ; .linalg.inv
: Calculer l'inverse d'une matrice ; 🎜🎜np.linalg.det
: Calculer le déterminant d'une matrice ; 🎜🎜np.linalg.solve
code> : Résoudre un système d'équations linéaires ; 🎜🎜🎜L'exemple de code suivant démontre l'utilisation de certaines opérations matricielles : 🎜rrreee🎜Résultats de sortie : 🎜rrreee🎜Dans cet article, nous présentons certaines fonctions numpy couramment utilisées et leur utilisation. En maîtrisant ces fonctions, vous serez en mesure de manipuler des tableaux et des matrices avec plus de flexibilité et d'effectuer divers calculs mathématiques et scientifiques. J'espère que cet article vous aidera à apprendre les fonctions numpy ! 🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

Fastapi ...

L'article traite du rôle des environnements virtuels dans Python, en se concentrant sur la gestion des dépendances du projet et l'évitement des conflits. Il détaille leur création, leur activation et leurs avantages pour améliorer la gestion de projet et réduire les problèmes de dépendance.
