


Calculer la somme de chaque ligne d'index externe dans la trame de données pandas multi-index
J'ai un bloc de données : la combinaison la moins chère de seller
、item
、price
、shipping
、免费送货最低
、count available
和count required
。我的目标是根据稍后计算的 total
找到 seller
和 item
(le code de calcul est indiqué ci-dessous). Les exemples de données sont les suivants :
import pandas as pd item1 = ['item 1', 'item 2', 'item 1', 'item 1', 'item 2'] seller1 = ['seller 1', 'seller 2', 'seller 3', 'seller 4', 'seller 1'] price1 = [1.85, 1.94, 2.00, 2.00, 2.02] shipping1 = [0.99, 0.99, 0.99, 2.99, 0.99] freeship1 = [5, 5, 5, 50, 5] countavailable1 = [1, 2, 2, 5, 2] countneeded1 = [2, 1, 2, 2, 1] df1 = pd.dataframe({'seller':seller1, 'item':item1, 'price':price1, 'shipping':shipping1, 'free shipping minimum':freeship1, 'count available':countavailable1, 'count needed':countneeded1}) # create columns that states if seller has all counts needed. # this will be used to sort by to prioritize the smallest number of orders possible for index, row in df1.iterrows(): if row['count available'] >= row['count needed']: df1.at[index, 'fulfills count needed'] = 'yes' else: df1.at[index, 'fulfills count needed'] = 'no' # dont want to calc price based on [count available], so need to check if seller has count i need and calc cost based on [count needed]. # if doesn't have [count needed], then calc cost on [count available]. for index, row in df1.iterrows(): if row['count available'] >= row['count needed']: df1.at[index, 'price x count'] = row['count needed'] * row['price'] else: df1.at[index, 'price x count'] = row['count available'] * row['price']
Cependant, l'une ou l'autre méthode seller
都可以出售多个item
。我想尽量减少支付的运费,所以我想通过 seller
将 item
s 分组在一起。因此,我根据我在另一个线程中看到的方式使用 .first()
les regroupe afin que chaque colonne soit conservée dans un nouveau dataframe groupé.
# don't calc [total] until sellers have been grouped # use first() method to return all columns and perform no other aggregations grouped1 = df1.sort_values('price').groupby(['seller', 'item']).first()
À ce stade, je veux réussirseller
计算total
。所以我有以下代码,但它为每个 item
计算 total
,而不是 seller
,这意味着 shipping
根据每个组中的商品数量被多次添加,或者当 price x count
结束时不应用免费送货最低免运费
.
# calc [Total] for index, row in grouped1.iterrows(): if (row['Free Shipping Minimum'] == 50) & (row['Price x Count'] > 50): grouped1.at[index, 'Total'] = row['Price x Count'] + 0 elif (row['Free Shipping Minimum'] == 5) & (row['Price x Count'] > 5): grouped1.at[index, 'Total'] = row['Price x Count'] + 0 else: grouped1.at[index, 'Total'] = row['Price x Count'] + row['Shipping']
Il semble en fait que je devrai peut-être calculer total
时对每个 seller
求和 price x count
, mais c'est essentiellement le même problème puisque je ne sais pas comment calculer chaque ligne de l'index externe. Quelles méthodes puis-je utiliser pour ce faire ?
De plus, si quelqu'un a des suggestions sur la façon d'atteindre la seconde moitié de mes objectifs, n'hésitez pas à les demander. Je veux juste retourner tous les articles dont j'ai besoin. Par exemple, j'ai besoin de 2 "Projet 1" et de 2 "Projet 2". Si "Vendeur 1" a 2 "Article 1" et 1 "Article 2", et que "Vendeur 2" a 1 "Article 1" et 1 "Article 2", alors je veux que tous les articles du "Vendeur 1" (en supposant que ce soit le moins cher), mais il n'y a qu'un seul "Item1" pour "Seller2". Cela semble affecter le calcul de la colonne total
, mais je ne sais pas comment l'implémenter. total
列的计算,但我不确定如何实现它。
正确答案
我最终决定首先对 seller
进行分组,并对 price x count
进行求和以找到 subtotal
s,将其转换为数据帧,然后将 df1
与新的 subtotal
数据帧合并以创建 groupedphpcnend cphpcn 数据框。然后我使用 <code>np.where
建议创建了 totals
列(这比我的 for 循环优雅得多,并且可以轻松处理 nan 值)。最后按seller
、total
、item
Bonne réponse
🎜🎜J'ai finalement décidé de regrouper levendeur
en premier et de additionner le prix x nombre
pour trouver le sous-total
, convertissez-les en dataframes, puis fusionnez df1
avec le nouveau dataframe subtotal
pour créer le bloc de données groupedphpcnend cphpcn. J'ai ensuite créé la colonne <code>totaux
en utilisant la suggestion np.where
(c'est beaucoup plus élégant que ma boucle for et gère facilement les valeurs nan). Enfin, regroupez par vendeur
, total
, article
pour renvoyer les résultats souhaités. Le code final est le suivant : 🎜
import pandas as pd import numpy as np item1 = ['item 1', 'item 2', 'item 1', 'item 1', 'item 2'] seller1 = ['Seller 1', 'Seller 2', 'Seller 3', 'Seller 4', 'Seller 1'] price1 = [1.85, 1.94, 2.69, 2.00, 2.02] shipping1 = [0.99, 0.99, 0.99, 2.99, 0.99] freeship1 = [5, 5, 5, 50, 5] countavailable1 = [1, 2, 2, 5, 2] countneeded1 = [2, 1, 2, 2, 1] df1 = pd.DataFrame({'Seller':seller1, 'Item':item1, 'Price':price1, 'Shipping':shipping1, 'Free Shipping Minimum':freeship1, 'Count Available':countavailable1, 'Count Needed':countneeded1}) # create columns that states if seller has all counts needed. # this will be used to sort by to prioritize the smallest number of orders possible for index, row in df1.iterrows(): if row['Count Available'] >= row['Count Needed']: df1.at[index, 'Fulfills Count Needed'] = 'Yes' else: df1.at[index, 'Fulfills Count Needed'] = 'No' # dont want to calc price based on [count available], so need to check if seller has count I need and calc cost based on [count needed]. # if doesn't have [count needed], then calc cost on [count available]. for index, row in df1.iterrows(): if row['Count Available'] >= row['Count Needed']: df1.at[index, 'Price x Count'] = row['Count Needed'] * row['Price'] else: df1.at[index, 'Price x Count'] = row['Count Available'] * row['Price'] # subtotals by seller, then assign calcs to column called [Subtotal] and merge into dataframe subtotals = df1.groupby(['Seller'])['Price x Count'].sum().reset_index() subtotals.rename({'Price x Count':'Subtotal'}, axis=1, inplace=True) grouped = df1.merge(subtotals[['Subtotal', 'Seller']], on='Seller') # calc [Total] grouped['Total'] = np.where(grouped['Subtotal'] > grouped['Free Shipping Minimum'], grouped['Subtotal'], grouped['Subtotal'] + grouped['Shipping']) grouped.groupby(['Seller', 'Total', 'Item']).first()
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI
