Table des matières
正确答案
Bonne réponse
Maison développement back-end Tutoriel Python Calculer la somme de chaque ligne d'index externe dans la trame de données pandas multi-index

Calculer la somme de chaque ligne d'index externe dans la trame de données pandas multi-index

Feb 05, 2024 pm 10:00 PM

计算多索引 pandas 数据帧外部索引每行的总和

Contenu de la question

J'ai un bloc de données : la combinaison la moins chère de selleritempriceshipping免费送货最低count availablecount required。我的目标是根据稍后计算的 total 找到 selleritem (le code de calcul est indiqué ci-dessous). Les exemples de données sont les suivants :

import pandas as pd

item1 = ['item 1', 'item 2', 'item 1', 'item 1', 'item 2']
seller1 = ['seller 1', 'seller 2', 'seller 3', 'seller 4', 'seller 1']
price1 = [1.85, 1.94, 2.00, 2.00, 2.02]
shipping1 = [0.99, 0.99, 0.99, 2.99, 0.99]
freeship1 = [5, 5, 5, 50, 5]
countavailable1 = [1, 2, 2, 5, 2]
countneeded1 = [2, 1, 2, 2, 1]

df1 = pd.dataframe({'seller':seller1,
                    'item':item1,
                    'price':price1,
                    'shipping':shipping1,
                    'free shipping minimum':freeship1,
                    'count available':countavailable1,
                    'count needed':countneeded1})

# create columns that states if seller has all counts needed.
# this will be used to sort by to prioritize the smallest number of orders possible
for index, row in df1.iterrows():
    if row['count available'] >= row['count needed']:
        df1.at[index, 'fulfills count needed'] = 'yes'
    else:
        df1.at[index, 'fulfills count needed'] = 'no'

# dont want to calc price based on [count available], so need to check if seller has count i need and calc cost based on [count needed].
# if doesn't have [count needed], then calc cost on [count available].
for index, row in df1.iterrows():
    if row['count available'] >= row['count needed']:
        df1.at[index, 'price x count'] = row['count needed'] * row['price']
    else:
        df1.at[index, 'price x count'] = row['count available'] * row['price']
Copier après la connexion

Cependant, l'une ou l'autre méthode seller都可以出售多个item。我想尽量减少支付的运费,所以我想通过 selleritems 分组在一起。因此,我根据我在另一个线程中看到的方式使用 .first() les regroupe afin que chaque colonne soit conservée dans un nouveau dataframe groupé.

# don't calc [total] until sellers have been grouped
# use first() method to return all columns and perform no other aggregations
grouped1 = df1.sort_values('price').groupby(['seller', 'item']).first()
Copier après la connexion

À ce stade, je veux réussirseller计算total。所以我有以下代码,但它为每个 item 计算 total,而不是 seller,这意味着 shipping 根据每个组中的商品数量被多次添加,或者当 price x count 结束时不应用免费送货最低免运费.

# calc [Total]
for index, row in grouped1.iterrows():
    if (row['Free Shipping Minimum'] == 50) & (row['Price x Count'] > 50):
        grouped1.at[index, 'Total'] = row['Price x Count'] + 0
    elif (row['Free Shipping Minimum'] == 5) & (row['Price x Count'] > 5):
        grouped1.at[index, 'Total'] = row['Price x Count'] + 0
    else:
        grouped1.at[index, 'Total'] = row['Price x Count'] + row['Shipping']
Copier après la connexion

Il semble en fait que je devrai peut-être calculer total 时对每个 seller 求和 price x count, mais c'est essentiellement le même problème puisque je ne sais pas comment calculer chaque ligne de l'index externe. Quelles méthodes puis-je utiliser pour ce faire ?

De plus, si quelqu'un a des suggestions sur la façon d'atteindre la seconde moitié de mes objectifs, n'hésitez pas à les demander. Je veux juste retourner tous les articles dont j'ai besoin. Par exemple, j'ai besoin de 2 "Projet 1" et de 2 "Projet 2". Si "Vendeur 1" a 2 "Article 1" et 1 "Article 2", et que "Vendeur 2" a 1 "Article 1" et 1 "Article 2", alors je veux que tous les articles du "Vendeur 1" (en supposant que ce soit le moins cher), mais il n'y a qu'un seul "Item1" pour "Seller2". Cela semble affecter le calcul de la colonne total, mais je ne sais pas comment l'implémenter. total 列的计算,但我不确定如何实现它。


正确答案


我最终决定首先对 seller 进行分组,并对 price x count 进行求和以找到 subtotals,将其转换为数据帧,然后将 df1 与新的 subtotal 数据帧合并以创建 groupedphpcnend cphpcn 数据框。然后我使用 <code>np.where 建议创建了 totals 列(这比我的 for 循环优雅得多,并且可以轻松处理 nan 值)。最后按sellertotalitem

Bonne réponse

🎜🎜J'ai finalement décidé de regrouper le vendeur en premier et de additionner le prix x nombre pour trouver le sous-total, convertissez-les en dataframes, puis fusionnez df1 avec le nouveau dataframe subtotal pour créer le bloc de données groupedphpcnend cphpcn. J'ai ensuite créé la colonne <code>totaux en utilisant la suggestion np.where (c'est beaucoup plus élégant que ma boucle for et gère facilement les valeurs nan). Enfin, regroupez par vendeur, total, article pour renvoyer les résultats souhaités. Le code final est le suivant : 🎜
import pandas as pd
import numpy as np

item1 = ['item 1', 'item 2', 'item 1', 'item 1', 'item 2']
seller1 = ['Seller 1', 'Seller 2', 'Seller 3', 'Seller 4', 'Seller 1']
price1 = [1.85, 1.94, 2.69, 2.00, 2.02]
shipping1 = [0.99, 0.99, 0.99, 2.99, 0.99]
freeship1 = [5, 5, 5, 50, 5]
countavailable1 = [1, 2, 2, 5, 2]
countneeded1 = [2, 1, 2, 2, 1]

df1 = pd.DataFrame({'Seller':seller1,
                    'Item':item1,
                    'Price':price1,
                    'Shipping':shipping1,
                    'Free Shipping Minimum':freeship1,
                    'Count Available':countavailable1,
                    'Count Needed':countneeded1})

# create columns that states if seller has all counts needed.
# this will be used to sort by to prioritize the smallest number of orders possible
for index, row in df1.iterrows():
    if row['Count Available'] >= row['Count Needed']:
        df1.at[index, 'Fulfills Count Needed'] = 'Yes'
    else:
        df1.at[index, 'Fulfills Count Needed'] = 'No'

# dont want to calc price based on [count available], so need to check if seller has count I need and calc cost based on [count needed].
# if doesn't have [count needed], then calc cost on [count available].
for index, row in df1.iterrows():
    if row['Count Available'] >= row['Count Needed']:
        df1.at[index, 'Price x Count'] = row['Count Needed'] * row['Price']
    else:
        df1.at[index, 'Price x Count'] = row['Count Available'] * row['Price']

# subtotals by seller, then assign calcs to column called [Subtotal] and merge into dataframe
subtotals = df1.groupby(['Seller'])['Price x Count'].sum().reset_index()

subtotals.rename({'Price x Count':'Subtotal'}, axis=1, inplace=True)

grouped = df1.merge(subtotals[['Subtotal', 'Seller']], on='Seller')


# calc [Total]
grouped['Total'] = np.where(grouped['Subtotal'] > grouped['Free Shipping Minimum'],
                             grouped['Subtotal'], grouped['Subtotal'] + grouped['Shipping'])

grouped.groupby(['Seller', 'Total', 'Item']).first()
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Quelles sont les bibliothèques Python populaires et leurs utilisations? Quelles sont les bibliothèques Python populaires et leurs utilisations? Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Apr 01, 2025 pm 10:51 PM

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Apr 01, 2025 pm 11:18 PM

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Que sont les expressions régulières? Que sont les expressions régulières? Mar 20, 2025 pm 06:25 PM

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

See all articles