优化mysql的limit offset的例子_MySQL
bitsCN.com
经常碰到的一个问题是limit的offset太高,如:limit 100000,20,这样系统会查询100020条,然后把前面的100000条都扔掉,这是开销很大的操作,导致查询很慢。假设所有分页的页面访问频率一样,这样的查询平均扫描表的一半数据。优化的方法,要么限制访问后面的页数,要么提升高偏移的查询效率。
一个简单的优化办法是使用覆盖查询(covering index)查询,然后再跟全行的做join操作。如:
SQL>select * from user_order_info limit 1000000,5;
这条语句就可以优化为:
select * from user_order_info inner join (select pin from user_order_info limit 1000000,5) as lim using(pin);
SQL>explain select * from user_order_info limit 1000000,5;
+----+-------------+-----------------+------+---------------+------+---------+------+----------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------+------+---------------+------+---------+------+----------+-------+
| 1 | SIMPLE | user_order_info | ALL | NULL | NULL | NULL | NULL | 23131886 | |
+----+-------------+-----------------+------+---------------+------+---------+------+----------+-------+
1 row in set (0.00 sec)
SQL>explain extended select * from user_order_info inner join (select pin from user_order_info limit 1000000,5) as lim using(pin);
+----+-------------+-----------------+--------+---------------+---------+---------+---------+----------+----------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------------+--------+---------------+---------+---------+---------+----------+----------+-------------+
| 1 | PRIMARY |
| 1 | PRIMARY | user_order_info | eq_ref | PRIMARY | PRIMARY | 42 | lim.pin | 1 | 100.00 | |
| 2 | DERIVED | user_order_info | index | NULL | PRIMARY | 42 | NULL | 23131886 | 100.00 | Using index |
+----+-------------+-----------------+--------+---------------+---------+---------+---------+----------+----------+-------------+
3 rows in set, 1 warning (0.66 sec)
根据两个explain的对比,可以清晰发现,第一个未使用索引,扫描了23131886行,第二个也扫描了同样的行数,但是使用了索引,效率提高了。这样可以直接使用index得到数据,而不去查询表,当找到需要的数据之后,在与全表join,获得其他的列。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Il existe de nombreuses raisons pour lesquelles la startup MySQL échoue, et elle peut être diagnostiquée en vérifiant le journal des erreurs. Les causes courantes incluent les conflits de port (vérifier l'occupation du port et la configuration de modification), les problèmes d'autorisation (vérifier le service exécutant les autorisations des utilisateurs), les erreurs de fichier de configuration (vérifier les paramètres des paramètres), la corruption du répertoire de données (restaurer les données ou reconstruire l'espace de la table), les problèmes d'espace de la table InNODB (vérifier les fichiers IBDATA1), la défaillance du chargement du plug-in (vérification du journal des erreurs). Lors de la résolution de problèmes, vous devez les analyser en fonction du journal d'erreur, trouver la cause profonde du problème et développer l'habitude de sauvegarder régulièrement les données pour prévenir et résoudre des problèmes.

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

Dans les opérations de la base de données MySQL, le traitement des chaînes est un lien inévitable. La fonction substring_index est conçue pour cela, qui peut extraire efficacement les sous-chaînes en fonction des séparateurs. Exemple d'application de fonction substring_index L'exemple suivant montre la flexibilité et la praticité de la fonction substring_index: extraire des pièces spécifiques de l'URL par exemple, extraire le nom de domaine: selectSubString_index ('www.mysql.com' ','. ', 2); Extraire l'extension de fichier pour obtenir facilement l'extension du fichier: selectSubString_index ('file.pdf', '.', - 1); Le traitement n'existe pas

La clé primaire MySQL ne peut pas être vide car la clé principale est un attribut de clé qui identifie de manière unique chaque ligne dans la base de données. Si la clé primaire peut être vide, l'enregistrement ne peut pas être identifié de manière unique, ce qui entraînera une confusion des données. Lorsque vous utilisez des colonnes entières ou des UUIdes auto-incrémentales comme clés principales, vous devez considérer des facteurs tels que l'efficacité et l'occupation de l'espace et choisir une solution appropriée.

MySQL peut renvoyer les données JSON. La fonction JSON_Extract extrait les valeurs de champ. Pour les requêtes complexes, envisagez d'utiliser la clause pour filtrer les données JSON, mais faites attention à son impact sur les performances. Le support de MySQL pour JSON augmente constamment, et il est recommandé de faire attention aux dernières versions et fonctionnalités.

MySQL ne peut pas fonctionner directement sur Android, mais il peut être implémenté indirectement en utilisant les méthodes suivantes: à l'aide de la base de données légère SQLite, qui est construite sur le système Android, ne nécessite pas de serveur distinct et a une petite utilisation des ressources, qui est très adaptée aux applications de périphériques mobiles. Connectez-vous à distance au serveur MySQL et connectez-vous à la base de données MySQL sur le serveur distant via le réseau pour la lecture et l'écriture de données, mais il existe des inconvénients tels que des dépendances de réseau solides, des problèmes de sécurité et des coûts de serveur.

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.
