PHP mysqli扩展库 预处理技术的使用分析_MySQL
bitsCN.com
1、使用mysqli扩展库 预处理技术 mysqli stmt 向数据库添加3个用户
//mysqli扩展库 预处理技术 mysqli stmt 向数据库添加3个用户
//1、创建mysqli对象
$mysqli = new MySQLi("localhost","root","root","test");
if($mysqli->connect_error){
die($mysqli->conncet_error);
}
//2、创建预编译对象
$sql="insert into user1(name,password,email,age) values(?,?,?,?)";
$mysqli_stmt=$mysqli->prepare($sql);
//绑定参数
$name="小芳";
$password="123456";
$email="xiaofang@126.com";
$age=18;
//参数绑定->给?号赋值 这里类型和顺序要一致
$mysqli_stmt->bind_param("sssi",$name,$password,$email,$age);
//执行
$b=$mysqli_stmt->execute();
//继续添加
$name="小杨";
$password="123456";
$email="xiaoyang@126.com";
$age=18;
//参数绑定->给?号赋值 这里类型和顺序要一致
$mysqli_stmt->bind_param("sssi",$name,$password,$email,$age);
//执行
$b=$mysqli_stmt->execute();
//继续添加
$name="小G";
$password="123456";
$email="xiaoG@126.com";
$age=18;
//参数绑定->给?号赋值 这里类型和顺序要一致
$mysqli_stmt->bind_param("sssi",$name,$password,$email,$age);
//执行
$b=$mysqli_stmt->execute();
if(!$b){
echo "操作失败".$mysqli_stmt->error;
}else{
echo "操作成功";
}
//关闭预编译
$mysqli_stmt->close();
$mysqli->close();
?>
2、使用预处理查询id>5的用户id name email
//使用预处理查询id>5的用户id name email
$mysqli=new MySQLi("localhost","root","root","test");
if($mysqli->connect_error){
die($mysqli->connect_error);
}
//创建预编译对象
$sql="select id,name,email from user1 where id>?";
$mysqli_stmt=$mysqli->prepare($sql);
$id=5;
//绑定参数
$mysqli_stmt->bind_param("i",$id);
//绑定结果集
$mysqli_stmt->bind_result($id,$name,$email);
//执行
$mysqli_stmt->execute();
//取出绑定的值
while($mysqli_stmt->fetch()){
echo "
$id--$name--$email";
}
//关闭资源
//释放结果
$mysqli_stmt->free_result();
//关闭与编译语句
$mysqli_stmt->close();
//关闭连接
$mysqli->close();
?>

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Le langage Go est un langage de programmation efficace, concis et facile à apprendre. Il est privilégié par les développeurs en raison de ses avantages en programmation simultanée et en programmation réseau. Dans le développement réel, les opérations de base de données font partie intégrante. Cet article explique comment utiliser le langage Go pour implémenter les opérations d'ajout, de suppression, de modification et de requête de base de données. Dans le langage Go, nous utilisons généralement des bibliothèques tierces pour faire fonctionner les bases de données, telles que les packages SQL couramment utilisés, gorm, etc. Ici, nous prenons le package SQL comme exemple pour présenter comment implémenter les opérations d'ajout, de suppression, de modification et de requête de la base de données. Supposons que nous utilisons une base de données MySQL.

Le mappage polymorphe Hibernate peut mapper les classes héritées à la base de données et fournit les types de mappage suivants : join-subclass : crée une table séparée pour la sous-classe, incluant toutes les colonnes de la classe parent. table par classe : créez une table distincte pour les sous-classes, contenant uniquement des colonnes spécifiques aux sous-classes. union-subclass : similaire à join-subclass, mais la table de classe parent réunit toutes les colonnes de la sous-classe.

Les dernières versions d'Apple des systèmes iOS18, iPadOS18 et macOS Sequoia ont ajouté une fonctionnalité importante à l'application Photos, conçue pour aider les utilisateurs à récupérer facilement des photos et des vidéos perdues ou endommagées pour diverses raisons. La nouvelle fonctionnalité introduit un album appelé "Récupéré" dans la section Outils de l'application Photos qui apparaîtra automatiquement lorsqu'un utilisateur a des photos ou des vidéos sur son appareil qui ne font pas partie de sa photothèque. L'émergence de l'album « Récupéré » offre une solution aux photos et vidéos perdues en raison d'une corruption de la base de données, d'une application d'appareil photo qui n'enregistre pas correctement dans la photothèque ou d'une application tierce gérant la photothèque. Les utilisateurs n'ont besoin que de quelques étapes simples

Comment utiliser MySQLi pour établir une connexion à une base de données en PHP : Inclure l'extension MySQLi (require_once) Créer une fonction de connexion (functionconnect_to_db) Appeler la fonction de connexion ($conn=connect_to_db()) Exécuter une requête ($result=$conn->query()) Fermer connexion ( $conn->close())

Écrit ci-dessus & La compréhension personnelle de l'auteur est que la reconstruction 3D basée sur l'image est une tâche difficile qui implique de déduire la forme 3D d'un objet ou d'une scène à partir d'un ensemble d'images d'entrée. Les méthodes basées sur l’apprentissage ont attiré l’attention pour leur capacité à estimer directement des formes 3D. Cet article de synthèse se concentre sur les techniques de reconstruction 3D de pointe, notamment la génération de nouvelles vues inédites. Un aperçu des développements récents dans les méthodes d'éclaboussure gaussienne est fourni, y compris les types d'entrée, les structures de modèle, les représentations de sortie et les stratégies de formation. Les défis non résolus et les orientations futures sont également discutés. Compte tenu des progrès rapides dans ce domaine et des nombreuses opportunités d’améliorer les méthodes de reconstruction 3D, un examen approfondi de l’algorithme semble crucial. Par conséquent, cette étude fournit un aperçu complet des progrès récents en matière de diffusion gaussienne. (Faites glisser votre pouce vers le haut

Le modèle GPT-4o publié par OpenAI constitue sans aucun doute une énorme avancée, notamment dans sa capacité à traiter plusieurs supports d'entrée (texte, audio, images) et à générer la sortie correspondante. Cette capacité rend l’interaction homme-machine plus naturelle et intuitive, améliorant considérablement l’aspect pratique et la convivialité de l’IA. Plusieurs points forts de GPT-4o incluent : une évolutivité élevée, des entrées et sorties multimédias, de nouvelles améliorations des capacités de compréhension du langage naturel, etc. 1. Entrée/sortie multimédia : GPT-4o+ peut accepter n'importe quelle combinaison de texte, d'audio et d'images en entrée et générer directement une sortie à partir de ces médias. Cela brise les limites des modèles d’IA traditionnels qui ne traitent qu’un seul type d’entrée, rendant ainsi l’interaction homme-machine plus flexible et plus diversifiée. Cette innovation contribue à alimenter les assistants intelligents

HTML ne peut pas lire directement la base de données, mais cela peut être réalisé via JavaScript et AJAX. Les étapes comprennent l'établissement d'une connexion à la base de données, l'envoi d'une requête, le traitement de la réponse et la mise à jour de la page. Cet article fournit un exemple pratique d'utilisation de JavaScript, AJAX et PHP pour lire les données d'une base de données MySQL, montrant comment afficher dynamiquement les résultats d'une requête dans une page HTML. Cet exemple utilise XMLHttpRequest pour établir une connexion à la base de données, envoyer une requête et traiter la réponse, remplissant ainsi les données dans les éléments de la page et réalisant la fonction de lecture HTML de la base de données.

Le 23 septembre, l'article « DeepModelFusion:ASurvey » a été publié par l'Université nationale de technologie de la défense, JD.com et l'Institut de technologie de Pékin. La fusion/fusion de modèles profonds est une technologie émergente qui combine les paramètres ou les prédictions de plusieurs modèles d'apprentissage profond en un seul modèle. Il combine les capacités de différents modèles pour compenser les biais et les erreurs des modèles individuels pour de meilleures performances. La fusion profonde de modèles sur des modèles d'apprentissage profond à grande échelle (tels que le LLM et les modèles de base) est confrontée à certains défis, notamment un coût de calcul élevé, un espace de paramètres de grande dimension, l'interférence entre différents modèles hétérogènes, etc. Cet article divise les méthodes de fusion de modèles profonds existantes en quatre catégories : (1) « Connexion de modèles », qui relie les solutions dans l'espace de poids via un chemin de réduction des pertes pour obtenir une meilleure fusion de modèles initiale.
