


Comment For-Range fonctionne-t-il avec le code assembleur dans Golang ?
php小编草莓为您介绍一种在golang中与汇编代码一起工作的方法——For-Range。For-Range是golang中的一个循环结构,可以与汇编代码结合使用,提供更高效的性能和灵活性。通过使用For-Range,您可以在golang中轻松处理大量的数据,并且可以借助汇编代码的优势,提升程序的执行效率。在本文中,我们将详细介绍For-Range的使用方法,并讲解如何与汇编代码进行协作,以实现更高效的程序运行。
问题内容
当源代码被汇编时,我对 golang 中 for-range 内的指针用法感到困惑。例如,我们知道下面的变量value将始终位于相同的内存地址中,并且相应的汇编代码显示了相同的逻辑。
// Source Code func main() { a := []int{1, 3, 5} for _, value := range a { foo(&value) } } func foo(a *int) int { b := *a * 42 fmt.Println(b) return b } // Assembly Code "".main STEXT size=126 args=0x0 locals=0x38 funcid=0x0 0x0000 00000 (main.go:15) TEXT "".main(SB), ABIInternal, $56-0 0x0000 00000 (main.go:15) CMPQ SP, 16(R14) 0x0004 00004 (main.go:15) PCDATA $0, $-2 0x0004 00004 (main.go:15) JLS 119 0x0006 00006 (main.go:15) PCDATA $0, $-1 0x0006 00006 (main.go:15) SUBQ $56, SP 0x000a 00010 (main.go:15) MOVQ BP, 48(SP) 0x000f 00015 (main.go:15) LEAQ 48(SP), BP 0x0014 00020 (main.go:15) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB) 0x0014 00020 (main.go:15) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB) 0x0014 00020 (main.go:16) MOVQ $0, ""..autotmp_4+24(SP) 0x001d 00029 (main.go:16) LEAQ ""..autotmp_4+32(SP), CX 0x0022 00034 (main.go:16) MOVUPS X15, (CX) 0x0026 00038 (main.go:16) MOVQ $1, ""..autotmp_4+24(SP) 0x002f 00047 (main.go:16) MOVQ $3, ""..autotmp_4+32(SP) 0x0038 00056 (main.go:16) MOVQ $5, ""..autotmp_4+40(SP) 0x0041 00065 (main.go:16) XORL AX, AX 0x0043 00067 (main.go:18) JMP 103 0x0045 00069 (main.go:18) MOVQ AX, ""..autotmp_10+16(SP) 0x004a 00074 (main.go:18) MOVQ ""..autotmp_4+24(SP)(AX\*8), CX 0x004f 00079 (main.go:18) MOVQ CX, "".value+8(SP) 0x0054 00084 (main.go:19) LEAQ "".value+8(SP), AX // Here we see we always use "".value+8(SP) as the argument into foo() 0x0059 00089 (main.go:19) PCDATA $1, $0 0x0059 00089 (main.go:19) CALL "".foo(SB) 0x005e 00094 (main.go:18) MOVQ ""..autotmp_10+16(SP), CX 0x0063 00099 (main.go:18) LEAQ 1(CX), AX 0x0067 00103 (main.go:18) CMPQ AX, $3 0x006b 00107 (main.go:18) JLT 69 0x006d 00109 (main.go:21) PCDATA $1, $-1 0x006d 00109 (main.go:21) MOVQ 48(SP), BP 0x0072 00114 (main.go:21) ADDQ $56, SP 0x0076 00118 (main.go:21) RET 0x0077 00119 (main.go:21) NOP 0x0077 00119 (main.go:15) PCDATA $1, $-1 0x0077 00119 (main.go:15) PCDATA $0, $-2 0x0077 00119 (main.go:15) CALL runtime.morestack_noctxt(SB) 0x007c 00124 (main.go:15) PCDATA $0, $-1 0x007c 00124 (main.go:15) JMP 0 0x0000 49 3b 66 10 76 71 48 83 ec 38 48 89 6c 24 30 48 I;f.vqH..8H.l$0H 0x0010 8d 6c 24 30 48 c7 44 24 18 00 00 00 00 48 8d 4c .l$0H.D$.....H.L 0x0020 24 20 44 0f 11 39 48 c7 44 24 18 01 00 00 00 48 $ D..9H.D$.....H 0x0030 c7 44 24 20 03 00 00 00 48 c7 44 24 28 05 00 00 .D$ ....H.D$(... 0x0040 00 31 c0 eb 22 48 89 44 24 10 48 8b 4c c4 18 48 .1.."H.D$.H.L..H 0x0050 89 4c 24 08 48 8d 44 24 08 e8 00 00 00 00 48 8b .L$.H.D$......H. 0x0060 4c 24 10 48 8d 41 01 48 83 f8 03 7c d8 48 8b 6c L$.H.A.H...|.H.l 0x0070 24 30 48 83 c4 38 c3 e8 00 00 00 00 eb 82 $0H..8........ rel 90+4 t=7 "".foo+0 rel 120+4 t=7 runtime.morestack_noctxt+0
但是,当我更改源代码并尝试查看汇编代码中的变化时,我发现没有任何变化。
// Changed Source Code func main() { a := []int{1, 3, 5} for _, value := range a { v := value foo(&v) } } func foo(a *int) int { b := *a * 42 fmt.Println(b) return b } // Changed Assembly Code "".main STEXT size=126 args=0x0 locals=0x38 funcid=0x0 0x0000 00000 (main.go:15) TEXT "".main(SB), ABIInternal, $56-0 0x0000 00000 (main.go:15) CMPQ SP, 16(R14) 0x0004 00004 (main.go:15) PCDATA $0, $-2 0x0004 00004 (main.go:15) JLS 119 0x0006 00006 (main.go:15) PCDATA $0, $-1 0x0006 00006 (main.go:15) SUBQ $56, SP 0x000a 00010 (main.go:15) MOVQ BP, 48(SP) 0x000f 00015 (main.go:15) LEAQ 48(SP), BP 0x0014 00020 (main.go:15) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB) 0x0014 00020 (main.go:15) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB) 0x0014 00020 (main.go:16) MOVQ $0, ""..autotmp_5+24(SP) 0x001d 00029 (main.go:16) LEAQ ""..autotmp_5+32(SP), CX 0x0022 00034 (main.go:16) MOVUPS X15, (CX) 0x0026 00038 (main.go:16) MOVQ $1, ""..autotmp_5+24(SP) 0x002f 00047 (main.go:16) MOVQ $3, ""..autotmp_5+32(SP) 0x0038 00056 (main.go:16) MOVQ $5, ""..autotmp_5+40(SP) 0x0041 00065 (main.go:16) XORL AX, AX 0x0043 00067 (main.go:18) JMP 103 0x0045 00069 (main.go:18) MOVQ AX, ""..autotmp_11+16(SP) 0x004a 00074 (main.go:18) MOVQ ""..autotmp_5+24(SP)(AX\*8), CX 0x004f 00079 (main.go:19) MOVQ CX, "".v+8(SP) 0x0054 00084 (main.go:20) LEAQ "".v+8(SP), AX // Here we see the logic of argument is the same as above. This makes me confused. 0x0059 00089 (main.go:20) PCDATA $1, $0 0x0059 00089 (main.go:20) CALL "".foo(SB) 0x005e 00094 (main.go:18) MOVQ ""..autotmp_11+16(SP), CX 0x0063 00099 (main.go:18) LEAQ 1(CX), AX 0x0067 00103 (main.go:18) CMPQ AX, $3 0x006b 00107 (main.go:18) JLT 69 0x006d 00109 (main.go:22) PCDATA $1, $-1 0x006d 00109 (main.go:22) MOVQ 48(SP), BP 0x0072 00114 (main.go:22) ADDQ $56, SP 0x0076 00118 (main.go:22) RET 0x0077 00119 (main.go:22) NOP 0x0077 00119 (main.go:15) PCDATA $1, $-1 0x0077 00119 (main.go:15) PCDATA $0, $-2 0x0077 00119 (main.go:15) CALL runtime.morestack_noctxt(SB) 0x007c 00124 (main.go:15) PCDATA $0, $-1 0x007c 00124 (main.go:15) JMP 0 0x0000 49 3b 66 10 76 71 48 83 ec 38 48 89 6c 24 30 48 I;f.vqH..8H.l$0H 0x0010 8d 6c 24 30 48 c7 44 24 18 00 00 00 00 48 8d 4c .l$0H.D$.....H.L 0x0020 24 20 44 0f 11 39 48 c7 44 24 18 01 00 00 00 48 $ D..9H.D$.....H 0x0030 c7 44 24 20 03 00 00 00 48 c7 44 24 28 05 00 00 .D$ ....H.D$(... 0x0040 00 31 c0 eb 22 48 89 44 24 10 48 8b 4c c4 18 48 .1.."H.D$.H.L..H 0x0050 89 4c 24 08 48 8d 44 24 08 e8 00 00 00 00 48 8b .L$.H.D$......H. 0x0060 4c 24 10 48 8d 41 01 48 83 f8 03 7c d8 48 8b 6c L$.H.A.H...|.H.l 0x0070 24 30 48 83 c4 38 c3 e8 00 00 00 00 eb 82 $0H..8........ rel 90+4 t=7 "".foo+0 rel 120+4 t=7 runtime.morestack_noctxt+0
那么局部变量 v
如何影响 for-range 呢?
正如上面的细节,我认为汇编代码应该显示新的局部变量的引入是如何工作的,但事实并非如此。
解决方法
几点。
规范仅针对您的情况说明了以下内容:
这就是全部:它说将会有变量,并且它们将会 重新使用。后一点意味着,比如说,如果您创建一个闭包(使用函数文字的匿名函数),它将关闭一个或多个迭代变量,并将其返回/保存在某处并在循环结束后调用或者与循环同时(例如,在一个单独的 goroutine 中),该闭包将在循环的每次迭代更新(或正在更新)时访问这些完全相同的变量。
如果您不做任何此类奇特的事情 - 例如,仅从循环体代码中的那些变量中读取,那么这些变量被重用的事实是无关紧要的。
让我们重申一下:规范没有对迭代变量的内存地址提供任何保证。
为什么这很重要?因为编译器可以自由地生成它希望的任何代码,只要结果以遵循规范的方式工作,并且编译器的作用至少取决于以下内容:
-
目标硬件(
GOARCH
)。 -
Go 的版本和 make(实现)。不要低估这一点:例如,规范并没有精确定义 GC 的工作方式,因此任何品牌和任何版本的 Go 都可以自由地实现移动 GC,这将移动内存中的任意变量并更新指向的所有指针他们。
目前,流行的 Go 版本(您应该使用的版本和 GCC 前端)并没有这样做,但没有什么可以阻止它们或任何其他实现这样做。
因此,最后,您会问为什么特定的编译器会生成看起来特别的代码,并且既不说明 Go 的品牌,也不说明其版本,也不说明您的 GOARCH
(尽管可以猜测它可能是 amd64
) 。因此,您的问题实际上是无法回答的,并且精确的答案不会太有用,因为它们很快就会过时。
因此,此类问题与 SO 无关。
我决定将所有这些作为答案,只是因为对于评论来说太多了。
在您的特定情况下,编译器可能分析了 foo
的代码,并发现它不会更新通过指针参数传递给它的变量,并且更重要的是不会将其进一步传递到调用堆栈。由于循环体中的 v
没有做任何其他事情,编译器可能会认为语义 v
可以被视为 variable
的纯粹别名,并且它只是跳过了该单独变量的创建。我可以想象,如果您将这些变量的指针传递给 foo
,并且让它打印这些地址,编译器将被迫实现 v
。
请注意,“关于”只是一个猜测。如果您想了解所有细节,您可以随时研究编译器的工作原理(Go 的两种流行实现都是 F/OSS 的一部分)和/或检测其代码。
另请注意,您可以要求编译器告诉您有关其功能的更多信息。最常用的 Go 实现(最初称为 gc
)在其 go build
和 go install
调用中支持 -gcflags
命令行参数,该调用将参数传递给编译器(请参阅 go 工具编译 -help
)。特别是,它的 -m
和 -N
(还有 -S
和 -live
)标志可能值得玩一下。
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Cet article explique les mécanismes d'importation des packages de Go: les importations nommées (par exemple, importation & quot; fmt & quot;) et les importations vierges (par exemple, importation _ & quot; fmt & quot;). Les importations nommées rendent le contenu du package accessible, tandis que les importations vierges ne font que l'exécuter t

Cet article explique la fonction Newflash () de Beego pour le transfert de données inter-pages dans les applications Web. Il se concentre sur l'utilisation de NewFlash () pour afficher les messages temporaires (succès, erreur, avertissement) entre les contrôleurs, en tirant parti du mécanisme de session. Limiter

Cet article détaille la conversion efficace de la requête MySQL Resulte en tranches de structure GO. Il met l'accent sur l'utilisation de la méthode de numérisation de la base de données / SQL pour des performances optimales, en évitant l'analyse manuelle. Meilleures pratiques pour la cartographie des champs struct à l'aide de balises DB et de robus

Cet article montre la création de simulations et de talons dans GO pour les tests unitaires. Il met l'accent sur l'utilisation des interfaces, fournit des exemples d'implémentations simulées et discute des meilleures pratiques telles que la tenue de simulations concentrées et l'utilisation de bibliothèques d'assertion. L'articl

Cet article explore les contraintes de type personnalisé de Go pour les génériques. Il détaille comment les interfaces définissent les exigences de type minimum pour les fonctions génériques, améliorant la sécurité du type et la réutilisabilité du code. L'article discute également des limitations et des meilleures pratiques

Cet article détaille la rédaction de fichiers efficace dans GO, en comparant OS.WriteFile (adapté aux petits fichiers) avec OS.OpenFile et Buffered Writes (optimal pour les fichiers volumineux). Il met l'accent sur la gestion robuste des erreurs, l'utilisation de différer et la vérification des erreurs spécifiques.

L'article traite des tests d'unité d'écriture dans GO, couvrant les meilleures pratiques, des techniques de moquerie et des outils pour une gestion efficace des tests.

Cet article explore l'utilisation d'outils de traçage pour analyser le flux d'exécution des applications GO. Il traite des techniques d'instrumentation manuelles et automatiques, de comparaison d'outils comme Jaeger, Zipkin et OpenTelelemetry, et mettant en évidence une visualisation efficace des données
