


Pourquoi affiner un modèle MLP sur un petit ensemble de données conserve toujours la même précision de test que les poids pré-entraînés ?
J'ai conçu un modèle mlp simple pour m'entraîner sur 6 000 échantillons de données.
class mlp(nn.module): def __init__(self,input_dim=92, hidden_dim = 150, num_classes=2): super().__init__() self.input_dim = input_dim self.num_classes = num_classes self.hidden_dim = hidden_dim #self.softmax = nn.softmax(dim=1) self.layers = nn.sequential( nn.linear(self.input_dim, self.hidden_dim), nn.relu(), nn.linear(self.hidden_dim, self.hidden_dim), nn.relu(), nn.linear(self.hidden_dim, self.hidden_dim), nn.relu(), nn.linear(self.hidden_dim, self.num_classes), ) def forward(self, x): x = self.layers(x) return x
et le modèle est instancié
model = mlp(input_dim=input_dim, hidden_dim=hidden_dim, num_classes=num_classes).to(device) optimizer = optimizer.adam(model.parameters(), lr=learning_rate, weight_decay=1e-4) criterion = nn.crossentropyloss()
et hyperparamètres :
num_epoch = 300 # 200e3//len(train_loader) learning_rate = 1e-3 batch_size = 64 device = torch.device("cuda") seed = 42 torch.manual_seed(42)
Ma mise en œuvre suit principalement cette question. J'enregistre le modèle sous forme de poids pré-entraînés model_weights.pth
.
model
在测试数据集上的准确率是96.80%
.
Ensuite, j'ai encore 50 échantillons (en finetune_loader
) sur lesquels j'essaye d'affiner le modèle :
model_finetune = MLP() model_finetune.load_state_dict(torch.load('model_weights.pth')) model_finetune.to(device) model_finetune.train() # train the network for t in tqdm(range(num_epoch)): for i, data in enumerate(finetune_loader, 0): #def closure(): # Get and prepare inputs inputs, targets = data inputs, targets = inputs.float(), targets.long() inputs, targets = inputs.to(device), targets.to(device) # Zero the gradients optimizer.zero_grad() # Perform forward pass outputs = model_finetune(inputs) # Compute loss loss = criterion(outputs, targets) # Perform backward pass loss.backward() #return loss optimizer.step() # a model_finetune.eval() with torch.no_grad(): outputs2 = model_finetune(test_data) #predicted_labels = outputs.squeeze().tolist() _, preds = torch.max(outputs2, 1) prediction_test = np.array(preds.cpu()) accuracy_test_finetune = accuracy_score(y_test, prediction_test) accuracy_test_finetune Output: 0.9680851063829787
J'ai vérifié, la précision reste la même qu'avant d'affiner le modèle à 50 échantillons, et les probabilités de sortie sont également les mêmes.
Quelle pourrait en être la raison ? Ai-je commis des erreurs en peaufinant le code ?
Bonne réponse
Vous devez réinitialiser l'optimiseur avec un nouveau modèle (objet model_finetune). Actuellement, comme je peux le voir dans votre code, il semble toujours utiliser l'optimiseur initialisé avec les anciens poids de modèle - model.parameters().
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Fastapi ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...
