Guide d'itération de la version Numpy
De l'ancienne version à la nouvelle version : Guide de mise à jour de la version Numpy
1. Introduction
Numpy est l'une des bibliothèques mathématiques les plus couramment utilisées en Python et est largement utilisée dans les domaines du calcul scientifique, de l'analyse de données et de l'apprentissage automatique. Numpy rend le traitement d'ensembles de données à grande échelle plus efficace et plus facile en fournissant des opérations de tableau et des fonctions mathématiques efficaces.
Bien que Numpy disposait de nombreuses fonctionnalités puissantes lors de sa sortie initiale, au fil du temps, Numpy a continué à subir des mises à jour de version et des améliorations de fonctionnalités basées sur les commentaires des développeurs et des utilisateurs. Chaque nouvelle version apporte de nouvelles fonctionnalités et améliorations, et peut également introduire des modifications rétrocompatibles.
Cet article fournira un guide de mise à jour de version pour les utilisateurs utilisant Numpy de l'ancienne version vers la nouvelle version. Nous présenterons tour à tour des mises à jour importantes dans les versions historiques de Numpy et donnerons des exemples de code spécifiques pour aider les lecteurs à mieux comprendre et à s'adapter à la nouvelle version de Numpy.
2. Guide de mise à jour de la version
- Guide de mise à jour de Numpy 1.14 :
La version Numpy 1.14 introduit de nouvelles fonctions et optimisations, le changement le plus important est l'introduction d'une nouvelle méthode de remplissage de tableau -fill
Method. Cette méthode peut être utilisée pour remplir un tableau avec des valeurs spécifiées, ce qui est très pratique.fill
方法。该方法可以用来以指定的值填充一个数组,非常方便。
代码示例:
import numpy as np arr = np.zeros((3, 3)) arr.fill(5) print(arr)
输出:
[[5. 5. 5.] [5. 5. 5.] [5. 5. 5.]]
- Numpy 1.15更新指南:
Numpy 1.15版本主要改进了对多维数组的一些操作。其中一个重要的改变是引入了einsum
函数,可以用来进行张量计算和矩阵乘法等操作。此外,还引入了numpy.core._exceptions.VisibleDeprecationWarning
警告,该警告将在未来几个版本中作为默认行为。
代码示例:
import numpy as np arr1 = np.array([[1, 2], [3, 4]]) arr2 = np.array([[5, 6], [7, 8]]) result = np.einsum('ij,jk->ik', arr1, arr2) print(result)
输出:
[[19 22] [43 50]]
- Numpy 1.16更新指南:
Numpy 1.16版本引入了一些新的函数和方法,例如stack
、hstack
和vstack
,用于在不同维度上对多个数组进行堆叠。此外,还引入了dtype
参数,用于指定数组的数据类型。
代码示例:
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) result = np.vstack((arr1, arr2)) print(result)
输出:
[[1 2 3] [4 5 6]]
- Numpy 1.17更新指南:
Numpy 1.17版本引入了一些新的函数和优化,其中最重要的是引入了isnat
import numpy as np arr = np.array(['2000-01-01', '2000-01-02', '2000-01-03'], dtype='datetime64') result = np.isnat(arr) print(result)
[False False False]
- Guide de mise à jour Numpy 1.15 :
La version Numpy 1.15 améliore principalement certaines opérations sur les tableaux multidimensionnels. L'un des changements importants est l'introduction de la fonction einsum
, qui peut être utilisée pour effectuer des opérations telles que des calculs tensoriels et des multiplications matricielles. De plus, un avertissement numpy.core._exceptions.VisibleDeprecationWarning
a été introduit, qui sera le comportement par défaut dans les prochaines versions.
Exemple de code :
rrreeeSortie :
rrreee- 🎜Guide de mise à jour Numpy 1.16 : 🎜La version Numpy 1.16 introduit de nouvelles fonctions et méthodes, telles que
stack
, hstack et vstack
sont utilisés pour empiler plusieurs tableaux de différentes dimensions. De plus, le paramètre dtype
est également introduit pour spécifier le type de données du tableau. 🎜🎜🎜Exemple de code : 🎜rrreee🎜Sortie : 🎜rrreee- 🎜Guide de mise à jour Numpy 1.17 : 🎜La version 1.17 de Numpy introduit un certain nombre de nouvelles fonctions et optimisations, dont la plus importante est l'introduction de isnat est utilisée pour vérifier si une date est une date invalide (NaT). De plus, la prise en charge des générateurs de nombres aléatoires a été améliorée, notamment davantage de fonctions de distribution et une génération efficace de nombres aléatoires. 🎜🎜🎜Exemple de code : 🎜rrreee🎜Sortie : 🎜rrreee🎜 3. Résumé🎜Cet article présente la mise à jour de la version de Numpy, en se concentrant sur certaines fonctionnalités et améliorations importantes. En lisant cet article, les lecteurs peuvent en apprendre davantage sur les changements importants apportés à chaque version de Numpy, puis démarrer et s'adapter rapidement à la nouvelle version de Numpy grâce à des exemples de code spécifiques. 🎜🎜Si vous mettez à niveau votre application ou votre projet vers la dernière version de Numpy, il est recommandé de lire attentivement le guide de mise à jour de la version correspondante et la documentation avant la mise à niveau pour vous assurer que votre code est compatible avec la nouvelle version et peut fonctionner correctement. 🎜🎜Je vous souhaite de meilleurs résultats en utilisant Numpy ! 🎜
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Fastapi ...

Comprendre la stratégie anti-rampe d'investissement.com, Beaucoup de gens essaient souvent de ramper les données d'actualités sur Investing.com (https://cn.investing.com/news/latest-news) ...

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...
