Table des matières
一、MySql的Query Cache
二、SQL Server的Procedure Cache
Maison base de données tutoriel mysql 对MySql查询缓存及SQL Server过程缓存的理解及总结_MySQL

对MySql查询缓存及SQL Server过程缓存的理解及总结_MySQL

Jun 01, 2016 pm 01:31 PM
技术

bitsCN.com

一、MySql的Query Cache

1、Query Cache

MySQL Query Cache是用来缓存我们所执行的SELECT语句以及该语句的结果集。MySql在实现Query Cache的具体技术细节上类似典型的KV存储,就是将SELECT语句和该查询语句的结果集做了一个HASH映射并保存在一定的内存区域中。当客户端发起SQL查询时,Query Cache的查找逻辑是,先对SQL进行相应的权限验证,接着就通过Query Cache来查找结果。它不需要经过Optimizer模块进行执行计划的分析优化,更不需要发生同任何存储引擎的交互,减少了大量的磁盘IO和CPU运算,所以有时候效率非常高。

2、Query Cache设置参数

可以通过调整 MySQL的参数打开并设置它的Query Cache功能,主要有以下5个参数:

(1)、query_cache_limit:允许缓存的单条查询结果集的最大容量,默认是1MB,超过此参数设置的查询结果集将不会被缓存;
(2)、query_cache_min_res_unit:设置查询缓存Query Cache每次分配内存的最小空间大小,即每个查询的缓存最小占用的内存空间大小;
(3)、query_cache_size:设置 Query Cache 所使用的内存大小,默认值为0,大小必须是1024的整数倍,如果不是整数倍,MySQL 会自动调整降低最小量以达到1024的倍数;
(4)、query_cache_type:控制 Query Cache 功能的开关,可以设置为0、1、2三种,意义分别如下:
  a、0(OFF):关闭 Query Cache 功能,任何情况下都不会使用 Query Cache;
  b、1(ON):开启 Query Cache 功能,但是当SELECT语句中使用SQL_NO_CACHE提示后,将不使用Query Cache;
  c、2(DEMAND):开启Query Cache 功能,但是只有当SELECT语句中使用了SQL_CACHE 提示后,才使用Query Cache。
(5)、query_cache_wlock_invalidate:控制当有写锁定发生在表上的时刻是否先失效该表相关的Query Cache,如果设置为 1(TRUE),则在写锁定的同时将失效该表相关的所有Query Cache,如果设置为0(FALSE)则在锁定时刻仍然允许读取该表相关的Query Cache。

3、Query Cache和性能

任何事情过犹不及,尤其对于某些写频繁的系统,开启Query Cache功能可能并不能让系统性能有提升,有时反而会有下降。原因是MySql为了保证Query Cache缓存的内容和实际数据绝对一致,当某个数据表发生了更新、删除及插入操作,MySql都会强制使所有引用到该表的查询SQL的Query Cache失效。对于密集写操作,启用查询缓存后很可能造成频繁的缓存失效,间接引发内存激增及CPU飙升,对已经非常忙碌的数据库系统这是一种极大的负担。

4、其他

Query Cache因MySql的存储引擎不同而实现略有差异,比如MyISAM,缓存的结果集存储在OS Cache中,而最流行的InnoDB则放在Buffer Pool中。

 

二、SQL Server的Procedure Cache

SQL Server没有类似MySql的Query Cache机制,但是它有自己的缓存机制。SQL Server不会简单直接地缓存SQL查询结果集,而是缓存它所读取过的查询数据页(数据缓存Data Buffer),同时它还缓存执行计划(过程缓存Procedure Cache),下面就谈谈我们所熟知的过程缓存。

1、SQL执行过程

SQL语句在执行前首先需要被编译,接着需要通过SQL Server查询引擎进行优化,然后得到优化后的执行计划,最后SQL按照执行计划被执行。

2、过程缓存(Procedure Cache)

创建执行计划会占用CPU资源,当执行计划被创建后,SQL Server查询引擎默认会自动缓存执行计划。

对于整体相似,仅仅是参数不同的SQL语句,SQL Server可以重用缓存的执行计划。

但对于不同的SQL语句,SQL Server并不能重复使用以前的执行计划,而需要重新编译出一个新的执行计划,因为SQL Server查询引擎会自动缓存执行计划,每一个新的执行计划都会占用SQL Server的内存。

在SQL Server可用内存足够使用的情况下,查询引擎并不主动清除以前保存的查询计划。所以,某些情况下,一条相似的SQL语句,仅仅因为写法不同,而凭空多出了很多执行计划,对于相似的SQL,这些多余的执行计划白白地占据着内存,大大影响SQL Server中缓存的查询计划数目。

对于上面这种情况,如果限定了SQL Server最大可用内存,它将导致SQL Server可用内存减少,从而在执行查询时尤其是大的数据查询时与磁盘发生更多的内存页交换;如果没有设置最大可用内存,则SQL Server由于缓存了太多执行计划,从而使内存占用过大。

3、如何减少过程缓存
对于减少过程缓存的占用,主要是可以通过使用参数化查询。

参数化查询的关键是查询优化器将创建一个可以重用的缓存计划(SQL Server查询优化器将查询重新编写为一个参数化SQL语句),这个可重用的缓存计划消除了对这些类似SQL语句的每一次执行都创建一个缓存计划的需求。通过创建一个可重用计划,SQL Server就减少了存放类似的执行计划所需的内存使用。

对于开发人员,我们一般可以通过下面两种方式实现参数化查询:

(1)、使用存储过程执行SQL语句;

(2)、使用sp_executesql 方式执行SQL语句。

关于使用存储过程执行SQL,再说句题外话:对于存储过程一直以来有颇多争议,比如ORM派认为存储过程是完全面向过程的不易扩展不易维护的等等等等。根据我个人的开发经验,简单的几乎没有逻辑的存储过程我建议多用,但是复杂的存储过程一直以来都是BUG集中营,而且后期维护成本奇高(听我司架构师讲过,某重要业务系统的数据库有个八千多行的存储过程,两百多个变量,没有人敢动),逻辑最好通过应对剧烈变化的业务逻辑层来写。现在我们有了成熟的ORM,还有分层,开发中要绝对避免写过长且逻辑复杂的存储过程,否则面对变化,日积月累再出现几个八千行的存储过程也不是没有可能。

 

参考:

>

http://www.sql-server-performance.com/2004/data-cache/

>

bitsCN.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Mar 06, 2024 pm 05:34 PM

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il ​​y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

Avez-vous vraiment maîtrisé la conversion des systèmes de coordonnées ? Des enjeux multi-capteurs indispensables à la conduite autonome Avez-vous vraiment maîtrisé la conversion des systèmes de coordonnées ? Des enjeux multi-capteurs indispensables à la conduite autonome Oct 12, 2023 am 11:21 AM

Le premier article pilote et clé présente principalement plusieurs systèmes de coordonnées couramment utilisés dans la technologie de conduite autonome, et comment compléter la corrélation et la conversion entre eux, et enfin construire un modèle d'environnement unifié. L'objectif ici est de comprendre la conversion du véhicule en corps rigide de caméra (paramètres externes), la conversion de caméra en image (paramètres internes) et la conversion d'image en unité de pixel. La conversion de 3D en 2D aura une distorsion, une traduction, etc. Points clés : Le système de coordonnées du véhicule et le système de coordonnées du corps de la caméra doivent être réécrits : le système de coordonnées planes et le système de coordonnées des pixels Difficulté : la distorsion de l'image doit être prise en compte. La dé-distorsion et l'ajout de distorsion sont compensés sur le plan de l'image. 2. Introduction Il existe quatre systèmes de vision au total : système de coordonnées du plan de pixels (u, v), système de coordonnées d'image (x, y), système de coordonnées de caméra () et système de coordonnées mondiales (). Il existe une relation entre chaque système de coordonnées,

Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Feb 28, 2024 pm 07:20 PM

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! Mar 21, 2024 pm 05:21 PM

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Le premier modèle mondial de génération de vidéos de scènes de conduite autonomes multi-vues DrivingDiffusion : nouvelles idées pour les données et la simulation BEV Le premier modèle mondial de génération de vidéos de scènes de conduite autonomes multi-vues DrivingDiffusion : nouvelles idées pour les données et la simulation BEV Oct 23, 2023 am 11:13 AM

Quelques réflexions personnelles de l'auteur Dans le domaine de la conduite autonome, avec le développement de sous-tâches/solutions de bout en bout basées sur BEV, les données d'entraînement multi-vues de haute qualité et la construction de scènes de simulation correspondantes sont devenues de plus en plus importantes. En réponse aux problèmes des tâches actuelles, la « haute qualité » peut être divisée en trois aspects : des scénarios à longue traîne dans différentes dimensions : comme les véhicules à courte portée dans les données sur les obstacles et les angles de cap précis lors du découpage des voitures, et les données sur les lignes de voie. . Scènes telles que des courbes avec des courbures différentes ou des rampes/fusions/fusions difficiles à capturer. Celles-ci reposent souvent sur de grandes quantités de données collectées et sur des stratégies complexes d’exploration de données, qui sont coûteuses. Valeur réelle 3D - image hautement cohérente : l'acquisition actuelle des données BEV est souvent affectée par des erreurs d'installation/calibrage du capteur, des cartes de haute précision et l'algorithme de reconstruction lui-même. cela m'a amené à

GSLAM | Une architecture générale et un benchmark GSLAM | Une architecture générale et un benchmark Oct 20, 2023 am 11:37 AM

J'ai soudainement découvert un article vieux de 19 ans GSLAM : A General SLAM Framework and Benchmark open source code : https://github.com/zdzhaoyong/GSLAM Accédez directement au texte intégral et ressentez la qualité de ce travail ~ 1 Technologie SLAM abstraite a remporté de nombreux succès récemment et a attiré de nombreuses entreprises de haute technologie. Cependant, la question de savoir comment s'interfacer avec les algorithmes existants ou émergents pour effectuer efficacement des analyses comparatives en termes de vitesse, de robustesse et de portabilité reste une question. Dans cet article, une nouvelle plateforme SLAM appelée GSLAM est proposée, qui fournit non seulement des capacités d'évaluation, mais fournit également aux chercheurs un moyen utile de développer rapidement leurs propres systèmes SLAM.

'Minecraft' se transforme en une ville IA et les habitants des PNJ jouent comme de vraies personnes 'Minecraft' se transforme en une ville IA et les habitants des PNJ jouent comme de vraies personnes Jan 02, 2024 pm 06:25 PM

Veuillez noter que cet homme carré fronça les sourcils, pensant à l'identité des « invités non invités » devant lui. Il s’est avéré qu’elle se trouvait dans une situation dangereuse, et une fois qu’elle s’en est rendu compte, elle a rapidement commencé une recherche mentale pour trouver une stratégie pour résoudre le problème. Finalement, elle a décidé de fuir les lieux, de demander de l'aide le plus rapidement possible et d'agir immédiatement. En même temps, la personne de l'autre côté pensait la même chose qu'elle... Il y avait une telle scène dans "Minecraft" où tous les personnages étaient contrôlés par l'intelligence artificielle. Chacun d’eux a un cadre identitaire unique. Par exemple, la jeune fille mentionnée précédemment est une coursière de 17 ans mais intelligente et courageuse. Ils ont la capacité de se souvenir, de penser et de vivre comme des humains dans cette petite ville de Minecraft. Ce qui les anime est une toute nouvelle,

Revoir! Fusion profonde de modèles (LLM/modèle de base/apprentissage fédéré/mise au point, etc.) Revoir! Fusion profonde de modèles (LLM/modèle de base/apprentissage fédéré/mise au point, etc.) Apr 18, 2024 pm 09:43 PM

Le 23 septembre, l'article « DeepModelFusion:ASurvey » a été publié par l'Université nationale de technologie de la défense, JD.com et l'Institut de technologie de Pékin. La fusion/fusion de modèles profonds est une technologie émergente qui combine les paramètres ou les prédictions de plusieurs modèles d'apprentissage profond en un seul modèle. Il combine les capacités de différents modèles pour compenser les biais et les erreurs des modèles individuels pour de meilleures performances. La fusion profonde de modèles sur des modèles d'apprentissage profond à grande échelle (tels que le LLM et les modèles de base) est confrontée à certains défis, notamment un coût de calcul élevé, un espace de paramètres de grande dimension, l'interférence entre différents modèles hétérogènes, etc. Cet article divise les méthodes de fusion de modèles profonds existantes en quatre catégories : (1) « Connexion de modèles », qui relie les solutions dans l'espace de poids via un chemin de réduction des pertes pour obtenir une meilleure fusion de modèles initiale.

See all articles