


Explication détaillée des algorithmes de vision par ordinateur Python : révéler les secrets du traitement et de l'analyse d'images
La vision par ordinateur est une branche de l'informatique qui tente de développer la capacité des machines à percevoir des images et des vidéos. Les algorithmes de vision par ordinateur ont fait d'énormes progrès ces dernières années, en grande partie grâce au python.
Python est un langage de programmation de haut niveau, facile à apprendre, doté de bibliothèques et d'outils riches, et qui convient parfaitement à la recherche et au développement en vision par ordinateur. Cet article présentera plusieurs algorithmes de vision par ordinateur Python et fournira un code de démonstration pour vous aider à comprendre le fonctionnement de ces algorithmes.
1.Traitement d'images
Le traitement d'images est une partie importante de la vision par ordinateur, qui comprend une série d'opérations de traitement et d'analyse d'images. Ces opérations peuvent être divisées en deux catégories : les opérations ponctuelles et les opérations de zone.
- Opérations ponctuelles : les opérations ponctuelles font référence aux opérations effectuées sur chaque pixel d'une image. Les opérations courantes incluent les réglages de luminosité, les conversions de couleurs et la netteté.
import cv2 # 读取图像 image = cv2.imread("image.jpg") # 调整亮度 bright_image = cv2.addWeighted(image, 1.2, 0, 0) # 转换颜色空间 hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 锐化图像 sharpened_image = cv2.filter2D(image, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])) # 显示图像 cv2.imshow("Original Image", image) cv2.imshow("Bright Image", bright_image) cv2.imshow("HSV Image", hsv_image) cv2.imshow("Sharpened Image", sharpened_image) cv2.waiTKEy(0) cv2.destroyAllwindows()
- Opérations de région : les opérations de région font référence aux opérations effectuées dans une certaine zone d'une image. Les opérations de région courantes incluent l’analyse des composants connectés, les opérations morphologiques et la segmentation.
import cv2 # 读取图像 image = cv2.imread("image.jpg") # 连通分量分析 _, labels = cv2.connectedComponents(image) # 形态学操作 kernel = np.ones((5, 5), np.uint8) dilated_image = cv2.dilate(image, kernel) eroded_image = cv2.erode(image, kernel) # 分割图像 segmented_image = cv2.watershed(image, labels) # 显示图像 cv2.imshow("Original Image", image) cv2.imshow("Labeled Image", labels) cv2.imshow("Dilated Image", dilated_image) cv2.imshow("Eroded Image", eroded_image) cv2.imshow("Segmented Image", segmented_image) cv2.waitKey(0) cv2.destroyAllWindows()
2. Analyse d'images
L'analyse d'images est un autre élément important de la vision par ordinateur, qui comprend une série d'algorithmes permettant d'extraire des informations à partir d'images. Ces algorithmes peuvent être divisés en deux catégories : l’extraction de caractéristiques et la reconnaissance de formes.
- Extraction de caractéristiques : l'extraction de caractéristiques fait référence à l'extraction de caractéristiques représentatives de l'image. Les algorithmes d'extraction de caractéristiques courants incluent la détection des bords, la détection des coins et l'analyse de la texture.
import cv2 # 读取图像 image = cv2.imread("image.jpg") # 边缘检测 edges = cv2.Canny(image, 100, 200) # 角点检测 corners = cv2.GoodFeaturesToTrack(image, 25, 0.01, 10) # 纹理分析 texture = cv2.texture(image) # 显示图像 cv2.imshow("Original Image", image) cv2.imshow("Edges", edges) cv2.imshow("Corners", corners) cv2.imshow("Texture", texture) cv2.waitKey(0) cv2.destroyAllWindows()
- Reconnaissance de formes : la reconnaissance de formes fait référence à la correspondance des caractéristiques des images avec des modèles connus.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

HaDIDB: Une base de données Python évolutive de haut niveau légère HaDIDB (HaDIDB) est une base de données légère écrite en Python, avec un niveau élevé d'évolutivité. Installez HaDIDB à l'aide de l'installation PIP: PiPinStallHaDIDB User Management Créer un utilisateur: CreateUser () pour créer un nouvel utilisateur. La méthode Authentication () authentifie l'identité de l'utilisateur. FromHadidb.OperationMportUserUser_OBJ = User ("Admin", "Admin") User_OBJ.

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

MySQL Workbench peut se connecter à MARIADB, à condition que la configuration soit correcte. Sélectionnez d'abord "MariADB" comme type de connecteur. Dans la configuration de la connexion, définissez correctement l'hôte, le port, l'utilisateur, le mot de passe et la base de données. Lorsque vous testez la connexion, vérifiez que le service MARIADB est démarré, si le nom d'utilisateur et le mot de passe sont corrects, si le numéro de port est correct, si le pare-feu autorise les connexions et si la base de données existe. Dans une utilisation avancée, utilisez la technologie de mise en commun des connexions pour optimiser les performances. Les erreurs courantes incluent des autorisations insuffisantes, des problèmes de connexion réseau, etc. Lors des erreurs de débogage, analysez soigneusement les informations d'erreur et utilisez des outils de débogage. L'optimisation de la configuration du réseau peut améliorer les performances

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

La connexion MySQL peut être due aux raisons suivantes: le service MySQL n'est pas démarré, le pare-feu intercepte la connexion, le numéro de port est incorrect, le nom d'utilisateur ou le mot de passe est incorrect, l'adresse d'écoute dans my.cnf est mal configurée, etc. 2. Ajustez les paramètres du pare-feu pour permettre à MySQL d'écouter le port 3306; 3. Confirmez que le numéro de port est cohérent avec le numéro de port réel; 4. Vérifiez si le nom d'utilisateur et le mot de passe sont corrects; 5. Assurez-vous que les paramètres d'adresse de liaison dans My.cnf sont corrects.

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.
