Maison > développement back-end > Tutoriel Python > Polar calcule les percentiles

Polar calcule les percentiles

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Libérer: 2024-02-22 12:30:22
avant
947 Les gens l'ont consulté

Polar 计算百分位数

Contenu de la question

J'ai un dataframe polaire avec une colonne contenant des dates et d'autres colonnes contenant des prix, et je souhaite calculer le percentile pour chaque colonne dans une fenêtre de 252 x 3 observations.

Pour ce faire, je fais ceci :

prices = prices.sort(by=["date"])
rank_cols = list(set(prices.columns).difference("date"))

percentiles = (
    prices.sort(by=["date"])
    .set_sorted("date")
    .group_by_dynamic(
        index_column=["date"], every="1i", start_by="window", period="756i"
    )
    .agg(
        [
            (pl.col(col).rank() * 100.0 / pl.col(col).count()).alias(
                f"{col}_percentile"
            )
            for col in rank_cols
        ]
    )
)


Copier après la connexion

Mais l'exception levée est :

traceback (most recent call last):
  file "<string>", line 6, in <module>
  file "/usr/local/lib/python3.10/site-packages/polars/dataframe/group_by.py", line 1047, in agg
    self.df.lazy()
  file "/usr/local/lib/python3.10/site-packages/polars/lazyframe/frame.py", line 1706, in collect
    return wrap_df(ldf.collect())
polars.exceptions.invalidoperationerror: argument in operation 'group_by_dynamic' is not explicitly sorted

- if your data is already sorted, set the sorted flag with: '.set_sorted()'.
- if your data is not sorted, sort the 'expr/series/column' first.

Copier après la connexion

Dans le code, j'ai fait comme suggéré mais l'exception existe toujours.

Éditeur :

Apporter quelques modifications comme suggéré par @hericks.

import polars as pl
import pandas as pd
from datetime import datetime, timedelta

# generate 10 dates starting from today
start_date = datetime.now().date()
date_list = [start_date + timedelta(days=i) for i in range(10)]

# generate random prices for each date and column
data = {
    'date': date_list,
    'asset_1': [float(f"{i+1}.{i+2}") for i in range(10)],
    'asset_2': [float(f"{i+2}.{i+3}") for i in range(10)],
    'asset_3': [float(f"{i+3}.{i+4}") for i in range(10)],
}


prices = pl.dataframe(data)

prices = prices.cast({"date": pl.date})


rank_cols = list(set(prices.columns).difference("date"))

percentiles = (
    prices.sort(by=["date"])
    .set_sorted("date")
    .group_by_dynamic(
        index_column="date", every="1i", start_by="window", period="4i"
    )
    .agg(
        [
            (pl.col(col).rank() * 100.0 / pl.col(col).count()).alias(
                f"{col}_percentile"
            )
            for col in rank_cols
        ]
    )
)
Copier après la connexion

Maintenant je comprends

pyo3_runtime.panicexception: attempt to divide by zero
Copier après la connexion

Edit 2 :

Le problème était l'utilisation de la date, j'ai changé la date avec un entier puis le problème a été résolu. (Également ajouté pour obtenir le premier enregistrement en premier)

import polars as pl


int_list = [i+1 for i in range(6)]

# Generate random prices for each date and column
data = {
    'int_index': int_list,
    'asset_1': [1.1, 3.4, 2.6, 4.8, 7.4, 3.2],
    'asset_2': [4, 7, 8, 3, 4, 5],
    'asset_3': [1, 3, 10, 20, 2, 4],
}


# Convert the Pandas DataFrame to a Polars DataFrame
prices = pl.DataFrame(data)


rank_cols = list(set(prices.columns).difference("int_index"))

percentiles = (
    prices.sort(by="int_index")
    .set_sorted("int_index")
    .group_by_dynamic(
        index_column="int_index", every="1i", start_by="window", period="4i"
    )
    .agg(
        [
            (pl.col(col).rank().first() * 100.0 / pl.col(col).count()).alias(
                f"{col}_percentile"
            )
            for col in rank_cols
        ]
    )
)

Copier après la connexion

Edit 3 :

L'idée donnée est que l'index i prend les valeurs à l'index i, i+1, i+2, i+3 et calcule le rang centile du registre i par rapport à ces quatre valeurs.

Par exemple, pour le premier index (1) dans Asset_1, l'exemple (et les trois registres suivants) est :

1,1, 3,4, 2,6, 4,8, donc le percentile du premier registre est 25

Pour Asset_1, le deuxième exemple d'index (2) (et les trois registres suivants) est :

3,4, 2,6, 4,8 et 7,4, donc le percentile est de 50.


Réponse correcte


Je suis encore en train de deviner quelle est votre réponse attendue, mais vous pouvez probablement commencer par celle-ci

Donc, en considérant vos exemples de données :

import polars as pl

# generate random prices for each date and column
prices = pl.dataframe({
    'int_index': range(6),
    'asset_1': [1.1, 3.4, 2.6, 4.8, 7.4, 3.2],
    'asset_2': [4, 7, 8, 3, 4, 5],
    'asset_3': [1, 3, 10, 20, 2, 4],
})

┌───────────┬─────────┬─────────┬─────────┐
│ int_index ┆ asset_1 ┆ asset_2 ┆ asset_3 │
│ ---       ┆ ---     ┆ ---     ┆ ---     │
│ i64       ┆ f64     ┆ i64     ┆ i64     │
╞═══════════╪═════════╪═════════╪═════════╡
│ 0         ┆ 1.1     ┆ 4       ┆ 1       │
│ 1         ┆ 3.4     ┆ 7       ┆ 3       │
│ 2         ┆ 2.6     ┆ 8       ┆ 10      │
│ 3         ┆ 4.8     ┆ 3       ┆ 20      │
│ 4         ┆ 7.4     ┆ 4       ┆ 2       │
│ 5         ┆ 3.2     ┆ 5       ┆ 4       │
└───────────┴─────────┴─────────┴─────────┘
Copier après la connexion

Utilisez rolling() 创建窗口,然后(与您在问题中所做的相同) - rank().first() 除以 count()name.suffix() pour attribuer un nouveau nom à la colonne :

cols = pl.all().exclude('int_index')

percentiles = (
    prices.sort(by="int_index")
    .rolling(index_column="int_index", period="4i", offset="0i", closed="left")
    .agg((cols.rank().first() * 100 / cols.count()).name.suffix('_percentile'))
)

┌───────────┬────────────────────┬────────────────────┬────────────────────┐
│ int_index ┆ asset_1_percentile ┆ asset_2_percentile ┆ asset_3_percentile │
│ ---       ┆ ---                ┆ ---                ┆ ---                │
│ i64       ┆ f64                ┆ f64                ┆ f64                │
╞═══════════╪════════════════════╪════════════════════╪════════════════════╡
│ 0         ┆ 25.0               ┆ 50.0               ┆ 25.0               │
│ 1         ┆ 50.0               ┆ 75.0               ┆ 50.0               │
│ 2         ┆ 25.0               ┆ 100.0              ┆ 75.0               │
│ 3         ┆ 66.666667          ┆ 33.333333          ┆ 100.0              │
│ 4         ┆ 100.0              ┆ 50.0               ┆ 50.0               │
│ 5         ┆ 100.0              ┆ 100.0              ┆ 100.0              │
└───────────┴────────────────────┴────────────────────┴────────────────────┘
Copier après la connexion

Vous pouvez également vérifier le contenu à l'intérieur de chaque fenêtre :

(
    prices.sort(by="int_index")
    .rolling(index_column="int_index", period="4i", offset="0i", closed="left")
    .agg(cols)
)
┌───────────┬───────────────────┬─────────────┬───────────────┐
│ int_index ┆ asset_1           ┆ asset_2     ┆ asset_3       │
│ ---       ┆ ---               ┆ ---         ┆ ---           │
│ i64       ┆ list[f64]         ┆ list[i64]   ┆ list[i64]     │
╞═══════════╪═══════════════════╪═════════════╪═══════════════╡
│ 0         ┆ [1.1, 3.4, … 4.8] ┆ [4, 7, … 3] ┆ [1, 3, … 20]  │
│ 1         ┆ [3.4, 2.6, … 7.4] ┆ [7, 8, … 4] ┆ [3, 10, … 2]  │
│ 2         ┆ [2.6, 4.8, … 3.2] ┆ [8, 3, … 5] ┆ [10, 20, … 4] │
│ 3         ┆ [4.8, 7.4, 3.2]   ┆ [3, 4, 5]   ┆ [20, 2, 4]    │
│ 4         ┆ [7.4, 3.2]        ┆ [4, 5]      ┆ [2, 4]        │
│ 5         ┆ [3.2]             ┆ [5]         ┆ [4]           │
└───────────┴───────────────────┴─────────────┴───────────────┘
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:stackoverflow.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal