


Conquérir l'apprentissage automatique avec Python : révéler la voie à suivre pour démarrer, la pratique pratique et le développement de carrière
Entrant dans l'ère de l'intelligence artificielle, l'apprentissage automatique, l'une de ses technologies de base, brille dans divers domaines. Si vous souhaitez conquérir le monde du learning automatique, python, en tant que langage de programmation puissant, est sans aucun doute votre bras droit.
1. Une fenêtre pour démarrer avec Python
Pour commencer le voyage Python, vous devez d'abord installer l'environnement Python. Il est recommandé d'utiliser Anaconda, qui inclut Python et ses nombreuses bibliothèques. Le processus d'installation est simple et rapide et convient aux débutants.
2. Construction de base de l'apprentissage automatique
L'apprentissage automatique nécessite une base solide, comprenant l'algèbre linéaire, la théorie des probabilités et les statistiques. Et Python fournit des bibliothèques puissantes telles que NumPy, SciPy et pandas qui peuvent facilement gérer ces opérations mathématiques.
3. Révéler le secret de l'algorithme d'apprentissage automatique
Machine LearningAlgorithmesIl en existe de nombreux types, et chaque algorithme a ses avantages et ses inconvénients. En Python, la bibliothèque Scikit-learn fournit un riche ensemble d'algorithmes d'apprentissage automatique, couvrant l'apprentissage supervisé, l'apprentissage non supervisé et l'apprentissage par renforcement. Nous pouvons implémenter ces algorithmes avec seulement quelques lignes de code.
4. Exercices pratiques pour appliquer ce que vous avez appris
Les connaissances théoriques doivent être combinées avec la pratique pour vraiment saisir l'essence de l'apprentissage automatique. Python nous propose de nombreux projets pratiques, tels que les concours Kaggle, la reconnaissance de chiffres manuscrits et la classification d'images. Grâce à ces projets, nous pouvons appliquer les connaissances que nous avons acquises à des problèmes pratiques et perfectionner continuellement nos capacités pratiques.
5. Parcours d'évolution de carrière, de l'entrée à la maîtrise
La demande de talents dans le domaine du machine learning est forte et les perspectives d'emploi sont larges. Si vous souhaitez évoluer dans ce domaine, vous devez continuellement améliorer votre technologie, élargir vos connaissances et toujours être attentif aux dernières tendances du secteur. En tant qu'outil puissant d'apprentissage automatique, Python peut vous aider à améliorer rapidement votre niveau technique, à surmonter les obstacles et à progresser dans votre cheminement de carrière.
6.Conclusion
L'apprentissage automatique est un sujet en constante évolution. Pour le conquérir, vous avez besoin d'un apprentissage et d'une pratique persistants. En tant que langage de programmation puissant, Python peut nous fournir un support solide. Tant que l’on maîtrise Python, on peut galoper dans le monde du machine learning et réaliser une belle carrière.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Kimi : En une seule phrase, un PPT est prêt en seulement dix secondes. PPT est tellement ennuyeux ! Pour tenir une réunion, vous devez avoir un PPT ; pour rédiger un rapport hebdomadaire, vous devez avoir un PPT ; pour solliciter des investissements, vous devez présenter un PPT ; même pour accuser quelqu'un de tricherie, vous devez envoyer un PPT ; L'université ressemble plus à une spécialisation PPT. Vous regardez le PPT en classe et faites le PPT après les cours. Peut-être que lorsque Dennis Austin a inventé le PPT il y a 37 ans, il ne s'attendait pas à ce qu'un jour le PPT devienne aussi répandu. Parler de notre dure expérience de création de PPT nous fait monter les larmes aux yeux. "Il m'a fallu trois mois pour réaliser un PPT de plus de 20 pages, et je l'ai révisé des dizaines de fois. J'avais envie de vomir quand j'ai vu le PPT." "À mon apogée, je faisais cinq PPT par jour, et même ma respiration." était PPT." Si vous avez une réunion impromptue, vous devriez le faire

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Tôt le matin du 20 juin, heure de Pékin, CVPR2024, la plus grande conférence internationale sur la vision par ordinateur qui s'est tenue à Seattle, a officiellement annoncé le meilleur article et d'autres récompenses. Cette année, un total de 10 articles ont remporté des prix, dont 2 meilleurs articles et 2 meilleurs articles étudiants. De plus, il y a eu 2 nominations pour les meilleurs articles et 4 nominations pour les meilleurs articles étudiants. La conférence la plus importante dans le domaine de la vision par ordinateur (CV) est la CVPR, qui attire chaque année un grand nombre d'instituts de recherche et d'universités. Selon les statistiques, un total de 11 532 articles ont été soumis cette année, dont 2 719 ont été acceptés, avec un taux d'acceptation de 23,6 %. Selon l'analyse statistique des données CVPR2024 du Georgia Institute of Technology, du point de vue des sujets de recherche, le plus grand nombre d'articles est la synthèse et la génération d'images et de vidéos (Imageandvideosyn

Nous savons que le LLM est formé sur des clusters informatiques à grande échelle utilisant des données massives. Ce site a présenté de nombreuses méthodes et technologies utilisées pour aider et améliorer le processus de formation LLM. Aujourd'hui, ce que nous souhaitons partager est un article qui approfondit la technologie sous-jacente et présente comment transformer un ensemble de « bare metals » sans même un système d'exploitation en un cluster informatique pour la formation LLM. Cet article provient d'Imbue, une startup d'IA qui s'efforce d'atteindre une intelligence générale en comprenant comment les machines pensent. Bien sûr, transformer un tas de « bare metal » sans système d'exploitation en un cluster informatique pour la formation LLM n'est pas un processus facile, plein d'exploration et d'essais et d'erreurs, mais Imbue a finalement réussi à former un LLM avec 70 milliards de paramètres et dans. le processus s'accumule

Rédacteur du Machine Power Report : Yang Wen La vague d’intelligence artificielle représentée par les grands modèles et l’AIGC a discrètement changé notre façon de vivre et de travailler, mais la plupart des gens ne savent toujours pas comment l’utiliser. C'est pourquoi nous avons lancé la rubrique « AI in Use » pour présenter en détail comment utiliser l'IA à travers des cas d'utilisation de l'intelligence artificielle intuitifs, intéressants et concis et stimuler la réflexion de chacun. Nous invitons également les lecteurs à soumettre des cas d'utilisation innovants et pratiques. Lien vidéo : https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Récemment, le vlog de la vie d'une fille vivant seule est devenu populaire sur Xiaohongshu. Une animation de style illustration, associée à quelques mots de guérison, peut être facilement récupérée en quelques jours seulement.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

La génération augmentée par récupération (RAG) est une technique qui utilise la récupération pour améliorer les modèles de langage. Plus précisément, avant qu'un modèle de langage ne génère une réponse, il récupère les informations pertinentes à partir d'une vaste base de données de documents, puis utilise ces informations pour guider le processus de génération. Cette technologie peut considérablement améliorer l'exactitude et la pertinence du contenu, atténuer efficacement le problème des hallucinations, augmenter la vitesse de mise à jour des connaissances et améliorer la traçabilité de la génération de contenu. RAG est sans aucun doute l’un des domaines de recherche les plus passionnants en matière d’intelligence artificielle. Pour plus de détails sur RAG, veuillez vous référer à l'article de la rubrique de ce site "Quelles sont les nouveautés de RAG, spécialisée dans le rattrapage des défauts des grands modèles ?" Cette revue l'explique clairement. Mais RAG n'est pas parfait et les utilisateurs rencontrent souvent des « problèmes » lorsqu'ils l'utilisent. Récemment, la solution avancée d'IA générative de NVIDIA
