


Guide d'optimisation des requêtes HTTP Python : améliorez les performances de vos applications Web
Optimisation de python La performance des requêtes Http est cruciale pour améliorer la rapidité et la réactivité de votre application réseau. Ce guide présentera quelques conseils et bonnes pratiques pour optimiser les requêtes HTTP Python afin de vous aider à améliorer les performances de vos applications Web.
1. Utiliser le pool de connexion
Le pooling de connexions est un mécanisme de gestion des connexions HTTP, qui peut réduire la surcharge liée à la création et à la destruction de connexions, améliorant ainsi les performances des requêtes HTTP. Python fournit la bibliothèque requests
, qui prend en charge le pool de connexions intégré. Il vous suffit de transmettre pool_connections
lors de la création du Sess<code>requests
库,该库内置了连接池支持,你只需在创建Sess<strong class="keylink">io</strong>n
对象时传入pool_connections
io
import requests
session = requests.Session()
session.mount("http://", requests.adapters.HTTPAdapter(pool_connections=10))
session.mount("https://", requests.adapters.HTTPAdapter(pool_connections=10))
Copier après la connexion
2. Utiliser les paramètres de délai d'attenteimport requests session = requests.Session() session.mount("http://", requests.adapters.HTTPAdapter(pool_connections=10)) session.mount("https://", requests.adapters.HTTPAdapter(pool_connections=10))
timeout
参数,你可以将其传入requests
库的get()
、post()
Le paramètre Timeout empêche les requêtes HTTP d'attendre indéfiniment une réponse. Python fournit
import requests
response = requests.get("https://example.com", timeout=5)
Copier après la connexion
3. Utilisez la compression gzipimport requests response = requests.get("https://example.com", timeout=5)
gzip
La compression Gzip peut réduire la taille des requêtes HTTP, augmentant ainsi la vitesse des requêtes. Python fournit le module
import requests
import gzip
data = "This is some data to send to the server."
compressed_data = gzip.compress(data.encode("utf-8"))
response = requests.post("https://example.com", data=compressed_data, headers={"Content-Encoding": "gzip"})
Copier après la connexion
4. Utilisez un client HTTP asynchroneimport requests import gzip data = "This is some data to send to the server." compressed_data = gzip.compress(data.encode("utf-8")) response = requests.post("https://example.com", data=compressed_data, headers={"Content-Encoding": "gzip"})
<strong class="keylink">ai</strong>ohttp
Le client HTTP asynchrone peut gérer plusieurs requêtes HTTP simultanément, augmentant ainsi la vitesse des requêtes. Python fournit la bibliothèque </p>ai<h3 id="ohttp-code-qui-est-un-client-HTTP-asynchrone-qui-peut-vous-aider-à-améliorer-les-performances-des-requêtes-HTTP-Par-exemple">ohttp
, qui est un client HTTP asynchrone qui peut vous aider à améliorer les performances des requêtes HTTP. Par exemple :
import aiohttp async def make_request(url): async with aiohttp.ClientSession() as session: async with session.get(url) as response: return await response.text() tasks = [make_request(url) for url in urls] results = await asyncio.gather(*tasks)
5. Utilisez CDN CDN (Content Delivery Network) peut mettre en cache vos ressources statiques (telles que des images, CSS, javascript, etc.) sur des
serveursplus proches de l'utilisateur, améliorant ainsi la vitesse de chargement des ressources. Vous pouvez utiliser un CDN dans votre application Web pour améliorer la vitesse de chargement des ressources statiques. Par exemple, vous pouvez utiliser Cloudflare CDN ou Amazon CloudFront CDN.
6. Utilisez HTTP/2h2
de Python pour utiliser HTTP/2. Par exemple :
import h2.connection
connection = h2.connection.H2Connection()
connection.send_headers(path="/index.html")
connection.send_data(b"<h1>Hello, world!</h1>")
connection.close()
Copier après la connexion
7. Utiliser les outils d'analyse des performances
import h2.connection connection = h2.connection.H2Connection() connection.send_headers(path="/index.html") connection.send_data(b"<h1>Hello, world!</h1>") connection.close()
requests-cache
import requests_cache session = requests_cache.CachedSession() session.mount("http://", requests_cache.CacheAdapter()) session.mount("https://", requests_cache.CacheAdapter()) response = session.get("https://example.com") print(session.cache.last_request.elapsed)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

Question: Comment afficher la version Redis Server? Utilisez l'outil de ligne de commande redis-Cli --version pour afficher la version du serveur connecté. Utilisez la commande Info Server pour afficher la version interne du serveur et devez analyser et retourner des informations. Dans un environnement de cluster, vérifiez la cohérence de la version de chaque nœud et peut être vérifiée automatiquement à l'aide de scripts. Utilisez des scripts pour automatiser les versions de visualisation, telles que la connexion avec les scripts Python et les informations d'impression.

Les étapes pour démarrer un serveur Redis incluent: Installez Redis en fonction du système d'exploitation. Démarrez le service Redis via Redis-Server (Linux / MacOS) ou Redis-Server.exe (Windows). Utilisez la commande redis-Cli Ping (Linux / MacOS) ou redis-Cli.exe Ping (Windows) pour vérifier l'état du service. Utilisez un client redis, tel que redis-cli, python ou node.js pour accéder au serveur.

Le réglage de la taille de la mémoire redis doit prendre en compte les facteurs suivants: volume de données et tendance de croissance: estimer la taille et le taux de croissance des données stockées. Type de données: différents types (tels que les listes, les hachages) occupent une mémoire différente. Politique de mise en cache: le cache complet, le cache partiel et les politiques de phasage affectent l'utilisation de la mémoire. Péx commercial: laissez suffisamment de mémoire pour faire face aux pics de trafic.

Redis Persistance prendra une mémoire supplémentaire, RDB augmente temporairement l'utilisation de la mémoire lors de la génération d'instantanés, et AOF continue de prendre de la mémoire lors de l'ajout de journaux. Les facteurs d'influence comprennent le volume des données, la politique de persistance et la configuration de Redis. Pour atténuer l'impact, vous pouvez raisonnablement configurer les stratégies d'instantané RDB, optimiser la configuration AOF, mettre à niveau le matériel et le surveiller l'utilisation de la mémoire. En outre, il est crucial de trouver un équilibre entre les performances et la sécurité des données.

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

** Le paramètre central de la configuration de la mémoire redis est MaxMemory, qui limite la quantité de mémoire que Redis peut utiliser. Lorsque cette limite est dépassée, Redis exécute une stratégie d'élimination selon maxmemory-policy, notamment: Noeviction (rejeter directement l'écriture), AllKeys-LRU / Volatile-LRU (éliminé par LRU), AllKeys-Random / Volatile-Random (éliminé par élimination aléatoire) et TTL volatile (temps d'expiration). D'autres paramètres connexes incluent des échantillons maxmemory (quantité d'échantillon LRU), compression RDB
