Table des matières
缘由
状态
前言
获取的知识
InnoDB存储引擎 master thread 的问题?
慢查询日志
分区表
B+树索引
什么时候使用B+树索引
聚集索引和辅助索引
事务的隐式提交
不好的事务习惯
Maison base de données tutoriel mysql 读书笔记 《MySQL技术内幕 InnoDB存储引擎》_MySQL

读书笔记 《MySQL技术内幕 InnoDB存储引擎》_MySQL

Jun 01, 2016 pm 01:37 PM
技术 经典 notes de lecture

bitsCN.com

缘由

在微博上看到李嘉诚自述的视频中有这么一句话,大意是:我很喜欢读书,我通常读完一本书,把它记到脑子里,再去换另一本书。当时我突有感想,这些年工作,买过的书也不少,有80余本,基本上每本都是经典的好书,也算是有点收藏的味道吧。但是很多书我都是翻一翻,满足自己对某一方面知识的渴望,但自己真的能记在脑力里的却不多,于是在2012年的年尾,伴随着自己的失业,我也打算好好的选择一些书继续阅读,争取读完了,能记住一些,再换下一本。

状态

首读 —— 《MySQL技术内幕 InnoDB存储引擎》 At 2012/12/20

前言

我不是DBA,我是一名开发者,所以站在开发者的角度来读这本书对自己还是有不少收获的,至少以后在项目中设计和使用数据库的过程中,可以考虑到如何更好的和DBA进行有效的沟通。

获取的知识

InnoDB存储引擎 master thread 的问题?

InnoDB的主线程的代码,在每秒执行的任务中:存在固定的只刷新100个脏页到磁盘、合并20个插入缓冲。在写密集的App中,每秒中可以能产生大于100个的脏页,或是产生大于20个插入缓冲,此时的master thread似乎会忙不过来,或者说它总是做得很慢。即使磁盘能在1秒内处理多于100个页的写入和20个插入缓冲的合并,由于hard coding(硬编码)master thread也只会选择刷新100个脏页和合并20个插入缓冲。同时,当发生宕机需要恢复时,由于很多数据还没有刷新回磁盘,所以可能会导致恢复需要很快的时间,尤其是对于insert buffer。

解决办法

InnoDB Plugin提供了一个参数,用来表示磁盘IO的吞吐量,参数为 innodb_io_capacity,默认值为200。对于刷新到磁盘的数量,会按照 innodb_io_capacity的百分比来刷新相对数量的页。规则如下:

  * 在合并插入缓冲时,合并插入缓冲的数量为 innodb_io_capacity 数值的5%。

  * 在从缓冲区刷新脏页时,刷新脏页的数量为 innodb_io_capacity。

如果你使用了SSD类的磁盘,或者将几块磁盘做了RAID,当你的存储拥有更高的IO速度时,完全可以将 innodb_io_capacity 的值调得再高点,知道符合你的磁盘IO的吞吐量为止。

慢查询日志

MySQL允许用户通过 long_query_time 参数来设置,默认值是10,代表10秒。默认情况下,MySQL数据库并不启动慢查询日志,需要我们手工将这个参数(log_slow_queries)设为ON,然后启动。

* 注意1

当设置了long_query_time后,MySQL数据库会记录运行时间超过该值的所有SQL语句,但对于运行时间正好等于long_query_time的情况,并不会被记录下。

* 注意2

从MySQL5.1开始,long_query_time开始以微秒记录SQL语句运行时间

另一个和慢查询日志有关的参数是 log_queries_not_using_indexes,如果运行的SQL语句没有使用索引,则MySQL数据库同样会将这条SQL语句记录到慢查询日志文件。

使用  mysqldumpslow 命令可以分析慢查询日志文件

mysqldumpslow nh122-190-slow.log
Copier après la connexion

MySQL5.1开始可以将慢查询的日志记录放入一张表中,这使我们的查询更加直观。慢查询表在MySQL数据库中,名为slow_log

参数log_output指定了慢查询输出的格式,默认为FILE,你可以将它设为TABLE,然后就可以查询mysql数据库的slow_log表了。

set global log_output='TABLE';
Copier après la connexion

 

分区表

MySQL 5.1 后添加对表分区的支持,当然支持的分区类型为水平分区(一表中不同行的记录分配到不同的物理文件中)。此外,MySQL数据库的分区是局部分区索引,一个分区中既存放了数据又存放了索引。

show variables like '%partition%'/G;
Copier après la connexion

MySQL目前支持的分区类型有:

  * RANGE分区:行数据基于属于一个给定连续区间的列值放入分区。MySQL5.5开始支持RANGE COLUMNS的分区。

  * LIST分区:和RANGE分区类似,只是LIST分区面向的是离散的值。MySQL5.5开始支持LIST COLUMNS的分区。

  * HASH分区:根据用户自定义的表达式的返回值来进行分区,返回值不能为负数。

  * KEY分区:根据MySQL数据库提供的哈希函数来进行分区。

* 不论创建何种类型的分区,如果表中存在主键或者是唯一索引时,分区别必须是唯一索引的一个组成部分。唯一索引可以是允许NULL值的,并且分区列只要是唯一索引的一个组成部分,不需要整个唯一索引列都是分区列。

* 当建表时没有指定主键,唯一索引时,可以指定任何一个列为分区列。

B+树索引

B+树索引其本质就是B+树在数据库中的实现,但是B+的索引在数据库中有一个特定就是高扇出性,因此在数据库中,B+树的高度一般都在2-3层,也就是对于查询某一键值的行记录,最多只需要2到3次IO,而对于当前的硬盘速度,2-3次IO也就意味着查询时间只需要0.02-0.03秒。

什么时候使用B+树索引

* 访问高选择性字段并从表中取出很少一部分行时,对这个字段添加B+树索引是非常有必要的。

聚集索引和辅助索引

InnoDB存储引擎是索引组织表,即表中数据按照主键顺序存放。而聚集索引就是按照每张表的主键构造一颗B+树,并且叶节点中存放着整张表的行记录数据,因此也让聚集索引的叶节点成为数据页。

每张表只能拥有一个聚集索引。 

辅助索引(非聚集索引),叶级别不包含行的全部数据。叶节点除了包含键值以外,每个叶级别中的索引行还包含了一个书签,该书签用来告诉InnoDB存储引擎。

事务的隐式提交

不好的事务习惯

* 在循环中提交

create procedure load1(count int unsigned)begindeclare s int unsigned default 1;declare c char(80) default repreat('a',80);while s <p>* 使用自动提交</p><p>自动提交并不是好习惯,因为这对于初级DBA容易犯错,另外对于一些开发人员可能产生错误的理解,如我们在上面提到的循环提交问题。MySQL数据库默认设置使用自动提交。可以使用如下语句来改变当然自动提交的方式</p><pre class="brush:php;toolbar:false">set autocommit=0;
Copier après la connexion

* 使用自动回滚

create procedure sp_auto_rollback_demo()begindeclare exit handler for sqlexception rollback;start transaction;insert into b select 1;insert into c select 2;insert into b select 1;insert into b select 3;commit;end;
Copier après la connexion

 

 

bitsCN.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Avez-vous vraiment maîtrisé la conversion des systèmes de coordonnées ? Des enjeux multi-capteurs indispensables à la conduite autonome Avez-vous vraiment maîtrisé la conversion des systèmes de coordonnées ? Des enjeux multi-capteurs indispensables à la conduite autonome Oct 12, 2023 am 11:21 AM

Le premier article pilote et clé présente principalement plusieurs systèmes de coordonnées couramment utilisés dans la technologie de conduite autonome, et comment compléter la corrélation et la conversion entre eux, et enfin construire un modèle d'environnement unifié. L'objectif ici est de comprendre la conversion du véhicule en corps rigide de caméra (paramètres externes), la conversion de caméra en image (paramètres internes) et la conversion d'image en unité de pixel. La conversion de 3D en 2D aura une distorsion, une traduction, etc. Points clés : Le système de coordonnées du véhicule et le système de coordonnées du corps de la caméra doivent être réécrits : le système de coordonnées planes et le système de coordonnées des pixels Difficulté : la distorsion de l'image doit être prise en compte. La dé-distorsion et l'ajout de distorsion sont compensés sur le plan de l'image. 2. Introduction Il existe quatre systèmes de vision au total : système de coordonnées du plan de pixels (u, v), système de coordonnées d'image (x, y), système de coordonnées de caméra () et système de coordonnées mondiales (). Il existe une relation entre chaque système de coordonnées,

Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Mar 06, 2024 pm 05:34 PM

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il ​​y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Feb 28, 2024 pm 07:20 PM

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! Mar 21, 2024 pm 05:21 PM

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Le premier modèle mondial de génération de vidéos de scènes de conduite autonomes multi-vues DrivingDiffusion : nouvelles idées pour les données et la simulation BEV Le premier modèle mondial de génération de vidéos de scènes de conduite autonomes multi-vues DrivingDiffusion : nouvelles idées pour les données et la simulation BEV Oct 23, 2023 am 11:13 AM

Quelques réflexions personnelles de l'auteur Dans le domaine de la conduite autonome, avec le développement de sous-tâches/solutions de bout en bout basées sur BEV, les données d'entraînement multi-vues de haute qualité et la construction de scènes de simulation correspondantes sont devenues de plus en plus importantes. En réponse aux problèmes des tâches actuelles, la « haute qualité » peut être divisée en trois aspects : des scénarios à longue traîne dans différentes dimensions : comme les véhicules à courte portée dans les données sur les obstacles et les angles de cap précis lors du découpage des voitures, et les données sur les lignes de voie. . Scènes telles que des courbes avec des courbures différentes ou des rampes/fusions/fusions difficiles à capturer. Celles-ci reposent souvent sur de grandes quantités de données collectées et sur des stratégies complexes d’exploration de données, qui sont coûteuses. Valeur réelle 3D - image hautement cohérente : l'acquisition actuelle des données BEV est souvent affectée par des erreurs d'installation/calibrage du capteur, des cartes de haute précision et l'algorithme de reconstruction lui-même. cela m'a amené à

GSLAM | Une architecture générale et un benchmark GSLAM | Une architecture générale et un benchmark Oct 20, 2023 am 11:37 AM

J'ai soudainement découvert un article vieux de 19 ans GSLAM : A General SLAM Framework and Benchmark open source code : https://github.com/zdzhaoyong/GSLAM Accédez directement au texte intégral et ressentez la qualité de ce travail ~ 1 Technologie SLAM abstraite a remporté de nombreux succès récemment et a attiré de nombreuses entreprises de haute technologie. Cependant, la question de savoir comment s'interfacer avec les algorithmes existants ou émergents pour effectuer efficacement des analyses comparatives en termes de vitesse, de robustesse et de portabilité reste une question. Dans cet article, une nouvelle plateforme SLAM appelée GSLAM est proposée, qui fournit non seulement des capacités d'évaluation, mais fournit également aux chercheurs un moyen utile de développer rapidement leurs propres systèmes SLAM.

'Minecraft' se transforme en une ville IA et les habitants des PNJ jouent comme de vraies personnes 'Minecraft' se transforme en une ville IA et les habitants des PNJ jouent comme de vraies personnes Jan 02, 2024 pm 06:25 PM

Veuillez noter que cet homme carré fronça les sourcils, pensant à l'identité des « invités non invités » devant lui. Il s’est avéré qu’elle se trouvait dans une situation dangereuse, et une fois qu’elle s’en est rendu compte, elle a rapidement commencé une recherche mentale pour trouver une stratégie pour résoudre le problème. Finalement, elle a décidé de fuir les lieux, de demander de l'aide le plus rapidement possible et d'agir immédiatement. En même temps, la personne de l'autre côté pensait la même chose qu'elle... Il y avait une telle scène dans "Minecraft" où tous les personnages étaient contrôlés par l'intelligence artificielle. Chacun d’eux a un cadre identitaire unique. Par exemple, la jeune fille mentionnée précédemment est une coursière de 17 ans mais intelligente et courageuse. Ils ont la capacité de se souvenir, de penser et de vivre comme des humains dans cette petite ville de Minecraft. Ce qui les anime est une toute nouvelle,

Plus qu'une simple gaussienne 3D ! Dernier aperçu des techniques de reconstruction 3D de pointe Plus qu'une simple gaussienne 3D ! Dernier aperçu des techniques de reconstruction 3D de pointe Jun 02, 2024 pm 06:57 PM

Écrit ci-dessus & La compréhension personnelle de l'auteur est que la reconstruction 3D basée sur l'image est une tâche difficile qui implique de déduire la forme 3D d'un objet ou d'une scène à partir d'un ensemble d'images d'entrée. Les méthodes basées sur l’apprentissage ont attiré l’attention pour leur capacité à estimer directement des formes 3D. Cet article de synthèse se concentre sur les techniques de reconstruction 3D de pointe, notamment la génération de nouvelles vues inédites. Un aperçu des développements récents dans les méthodes d'éclaboussure gaussienne est fourni, y compris les types d'entrée, les structures de modèle, les représentations de sortie et les stratégies de formation. Les défis non résolus et les orientations futures sont également discutés. Compte tenu des progrès rapides dans ce domaine et des nombreuses opportunités d’améliorer les méthodes de reconstruction 3D, un examen approfondi de l’algorithme semble crucial. Par conséquent, cette étude fournit un aperçu complet des progrès récents en matière de diffusion gaussienne. (Faites glisser votre pouce vers le haut

See all articles