Table des matières
Introduction au contexte
Introduction au projet
Comment utiliser
Promotion du projet
Maison Périphériques technologiques IA Grands modèles de petits lamas pouvant être exécutés avec un minimum de ressources de calcul et de mémoire

Grands modèles de petits lamas pouvant être exécutés avec un minimum de ressources de calcul et de mémoire

Mar 04, 2024 pm 02:30 PM
模型 开源 训练 内存占用

Introduction au contexte

Dans l'ère actuelle d'information explosive, la formation de modèles linguistiques devient de plus en plus complexe et difficile. Afin de former un modèle de langage efficace, nous avons besoin de beaucoup de ressources informatiques et de temps, ce qui est peu pratique pour de nombreuses personnes. Dans le même temps, nous sommes également confrontés au défi de savoir comment appliquer de grands modèles de langage avec des ressources de mémoire et de calcul limitées, en particulier sur les appareils de pointe.

Aujourd'hui, j'aimerais vous recommander un projet open source GitHub, jzhang38/TinyLlama, qui compte plus de 4,3 000 étoiles sur GitHub. Pour présenter le projet en une phrase, voici : "Le projet TinyLlama est un effort ouvert. pré-entraîner un modèle de 1,1 milliard de lamas sur 3 000 milliards de jetons.

只需少量计算和内存资源即可运行的小型 Llama 大模型

Introduction au projet

L'objectif de TinyLlama est de pré-entraîner un modèle de lama de 1,1 milliard sur 3 000 milliards de jetons. Avec une optimisation appropriée, nous pouvons y parvenir en seulement 90 jours en utilisant 16 GPU A100-40G. Le projet utilise exactement la même architecture et le même tokenizer que Llama 2, ce qui signifie que TinyLlama peut être facilement intégré et utilisé dans de nombreux projets open source basés sur Llama. De plus, TinyLlama est très compact, avec seulement 1,1 milliard de paramètres. Cette compacité le rend adapté à de nombreux scénarios d’application nécessitant un encombrement informatique et mémoire limité.

只需少量计算和内存资源即可运行的小型 Llama 大模型

只需少量计算和内存资源即可运行的小型 Llama 大模型

Comment utiliser

Vous pouvez directement télécharger le modèle et l'utiliser, ou utiliser la démo via huggingface.

只需少量计算和内存资源即可运行的小型 Llama 大模型

Si vous souhaitez vous entraîner seul, merci de vous référer aux détails de la formation ci-dessous.

只需少量计算和内存资源即可运行的小型 Llama 大模型

Promotion du projet

TinyLlama est un projet open source passionnant qui résout activement certains problèmes clés et a reçu une large attention dans la communauté open source.

只需少量计算和内存资源即可运行的小型 Llama 大模型

Ce qui suit est le tableau de tendance Star du projet (représentant le niveau d'activité du projet) :

只需少量计算和内存资源即可运行的小型 Llama 大模型

Pour plus de détails sur le projet, veuillez consulter le lien ci-dessous.

Adresse du projet Open source : https://github.com/jzhang38/TinyLlama

Auteur du projet Open source : jzhang38

Voici tous les membres impliqués dans la construction du projet :

只需少量计算和内存资源即可运行的小型 Llama 大模型

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

KAN, qui remplace MLP, a été étendu à la convolution par des projets open source KAN, qui remplace MLP, a été étendu à la convolution par des projets open source Jun 01, 2024 pm 10:03 PM

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes Jun 11, 2024 am 09:51 AM

Quoi? Zootopie est-elle concrétisée par l’IA domestique ? Avec la vidéo est exposé un nouveau modèle de génération vidéo domestique à grande échelle appelé « Keling ». Sora utilise une voie technique similaire et combine un certain nombre d'innovations technologiques auto-développées pour produire des vidéos qui comportent non seulement des mouvements larges et raisonnables, mais qui simulent également les caractéristiques du monde physique et possèdent de fortes capacités de combinaison conceptuelle et d'imagination. Selon les données, Keling prend en charge la génération de vidéos ultra-longues allant jusqu'à 2 minutes à 30 ips, avec des résolutions allant jusqu'à 1080p, et prend en charge plusieurs formats d'image. Un autre point important est que Keling n'est pas une démo ou une démonstration de résultats vidéo publiée par le laboratoire, mais une application au niveau produit lancée par Kuaishou, un acteur leader dans le domaine de la vidéo courte. De plus, l'objectif principal est d'être pragmatique, de ne pas faire de chèques en blanc et de se mettre en ligne dès sa sortie. Le grand modèle de Ke Ling est déjà sorti à Kuaiying.

Comment affiner la profondeur localement Comment affiner la profondeur localement Feb 19, 2025 pm 05:21 PM

Le réglage fin local des modèles de classe Deepseek est confronté au défi des ressources informatiques insuffisantes et de l'expertise. Pour relever ces défis, les stratégies suivantes peuvent être adoptées: quantification du modèle: convertir les paramètres du modèle en entiers à faible précision, réduisant l'empreinte de la mémoire. Utilisez des modèles plus petits: sélectionnez un modèle pré-entraîné avec des paramètres plus petits pour un réglage fin local plus facile. Sélection des données et prétraitement: sélectionnez des données de haute qualité et effectuez un prétraitement approprié pour éviter une mauvaise qualité des données affectant l'efficacité du modèle. Formation par lots: pour les grands ensembles de données, chargez les données en lots de formation pour éviter le débordement de la mémoire. Accélération avec GPU: Utilisez des cartes graphiques indépendantes pour accélérer le processus de formation et raccourcir le temps de formation.

Surpassant largement le DPO : l'équipe de Chen Danqi a proposé une optimisation simple des préférences SimPO et a également affiné le modèle open source 8B le plus puissant. Surpassant largement le DPO : l'équipe de Chen Danqi a proposé une optimisation simple des préférences SimPO et a également affiné le modèle open source 8B le plus puissant. Jun 01, 2024 pm 04:41 PM

Afin d'aligner les grands modèles de langage (LLM) sur les valeurs et les intentions humaines, il est essentiel d'apprendre les commentaires humains pour garantir qu'ils sont utiles, honnêtes et inoffensifs. En termes d'alignement du LLM, une méthode efficace est l'apprentissage par renforcement basé sur le retour humain (RLHF). Bien que les résultats de la méthode RLHF soient excellents, certains défis d’optimisation sont impliqués. Cela implique de former un modèle de récompense, puis d'optimiser un modèle politique pour maximiser cette récompense. Récemment, certains chercheurs ont exploré des algorithmes hors ligne plus simples, dont l’optimisation directe des préférences (DPO). DPO apprend le modèle politique directement sur la base des données de préférence en paramétrant la fonction de récompense dans RLHF, éliminant ainsi le besoin d'un modèle de récompense explicite. Cette méthode est simple et stable

Aucune donnée OpenAI requise, rejoignez la liste des grands modèles de code ! UIUC publie StarCoder-15B-Instruct Aucune donnée OpenAI requise, rejoignez la liste des grands modèles de code ! UIUC publie StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

À la pointe de la technologie logicielle, le groupe de l'UIUC Zhang Lingming, en collaboration avec des chercheurs de l'organisation BigCode, a récemment annoncé le modèle de grand code StarCoder2-15B-Instruct. Cette réalisation innovante a permis une percée significative dans les tâches de génération de code, dépassant avec succès CodeLlama-70B-Instruct et atteignant le sommet de la liste des performances de génération de code. Le caractère unique de StarCoder2-15B-Instruct réside dans sa stratégie d'auto-alignement pur. L'ensemble du processus de formation est ouvert, transparent et complètement autonome et contrôlable. Le modèle génère des milliers d'instructions via StarCoder2-15B en réponse au réglage fin du modèle de base StarCoder-15B sans recourir à des annotations manuelles coûteuses.

Le LLM est terminé ! OmniDrive : Intégration de la perception 3D et de la planification du raisonnement (la dernière version de NVIDIA) Le LLM est terminé ! OmniDrive : Intégration de la perception 3D et de la planification du raisonnement (la dernière version de NVIDIA) May 09, 2024 pm 04:55 PM

Écrit ci-dessus et compréhension personnelle de l'auteur : cet article est dédié à la résolution des principaux défis des grands modèles de langage multimodaux (MLLM) actuels dans les applications de conduite autonome, c'est-à-dire le problème de l'extension des MLLM de la compréhension 2D à l'espace 3D. Cette expansion est particulièrement importante car les véhicules autonomes (VA) doivent prendre des décisions précises concernant les environnements 3D. La compréhension spatiale 3D est essentielle pour les véhicules utilitaires car elle a un impact direct sur la capacité du véhicule à prendre des décisions éclairées, à prédire les états futurs et à interagir en toute sécurité avec l’environnement. Les modèles de langage multimodaux actuels (tels que LLaVA-1.5) ne peuvent souvent gérer que des entrées d'images de résolution inférieure (par exemple) en raison des limitations de résolution de l'encodeur visuel et des limitations de la longueur de la séquence LLM. Cependant, les applications de conduite autonome nécessitent

Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Jun 08, 2024 pm 01:00 PM

" sept péchés capitaux" » Dissiper les rumeurs : selon des informations divulguées et des documents obtenus par Vox, la haute direction d'OpenAI, y compris Altman, était bien au courant de ces dispositions de récupération de capitaux propres et les a approuvées. De plus, OpenAI est confronté à un problème grave et urgent : la sécurité de l’IA. Les récents départs de cinq employés liés à la sécurité, dont deux de ses employés les plus en vue, et la dissolution de l'équipe « Super Alignment » ont une nouvelle fois mis les enjeux de sécurité d'OpenAI sur le devant de la scène. Le magazine Fortune a rapporté qu'OpenA

Yolov10 : explication détaillée, déploiement et application en un seul endroit ! Yolov10 : explication détaillée, déploiement et application en un seul endroit ! Jun 07, 2024 pm 12:05 PM

1. Introduction Au cours des dernières années, les YOLO sont devenus le paradigme dominant dans le domaine de la détection d'objets en temps réel en raison de leur équilibre efficace entre le coût de calcul et les performances de détection. Les chercheurs ont exploré la conception architecturale de YOLO, les objectifs d'optimisation, les stratégies d'expansion des données, etc., et ont réalisé des progrès significatifs. Dans le même temps, le recours à la suppression non maximale (NMS) pour le post-traitement entrave le déploiement de bout en bout de YOLO et affecte négativement la latence d'inférence. Dans les YOLO, la conception de divers composants manque d’une inspection complète et approfondie, ce qui entraîne une redondance informatique importante et limite les capacités du modèle. Il offre une efficacité sous-optimale et un potentiel d’amélioration des performances relativement important. Dans ce travail, l'objectif est d'améliorer encore les limites d'efficacité des performances de YOLO à la fois en post-traitement et en architecture de modèle. à cette fin

See all articles