Maison développement back-end Tutoriel Python Maîtriser Python CPython : sujets et techniques avancés

Maîtriser Python CPython : sujets et techniques avancés

Mar 05, 2024 pm 07:40 PM

Mastering Python CPython: Advanced Topics and Techniques

Optimisation avancée : optimisation du bytecode

L'interpréteur

Cpython compile le code source Python en bytecode, qui est ensuite exécuté par la machine virtuelle. Bytecode Optimization implique de modifier le bytecode pour améliorer les performances. Les techniques d'optimisation courantes incluent :

import dis

def fib(n):
if n < 2:
return n
else:
return fib(n-1) + fib(n-2)

dis.dis(fib)
Copier après la connexion

Sortie :

1 0 LOAD_FAST0 (n)
2 POP_JUMP_IF_LESS8
4 LOAD_FAST0 (n)
6 LOAD_CONST 1 (1)
8 SUBTRACT
 10 CALL_FUNCTioN 1
 12 LOAD_FAST0 (n)
 14 LOAD_CONST 2 (2)
 16 SUBTRACT
 18 CALL_FUNCTION 1
 20 ADD
 22 RETURN_VALUE
Copier après la connexion

Nous pouvons analyser le bytecode en utilisant le module dis. Comme indiqué ci-dessus, la fonction de Fibonacci originale récursivement s'appelle elle-même, ce qui est très inefficace. On peut optimiser cela pour utiliser une boucle :

def fib_optimized(n):
if n < 2:
return n
else:
a, b = 0, 1
for _ in range(n-1):
a, b = b, a + b
return b

dis.dis(fib_optimized)
Copier après la connexion

Sortie :

1 0 LOAD_FAST0 (n)
2 POP_JUMP_IF_LESS6
4 LOAD_CONST 0 (0)
6 LOAD_CONST 1 (1)
8 STORE_FAST 0 (a)
 10 STORE_FAST 1 (b)
 12 LOAD_FAST0 (n)
 14 LOAD_CONST 1 (1)
 16 SUBTRACT
 18 GET_ITER
>> 20 FOR_ITER10 (to 32)
 22 STORE_FAST 1 (b)
 24 LOAD_FAST1 (b)
 26 LOAD_FAST0 (a)
 28 BINARY_OP0 (+)
 30 STORE_FAST 0 (a)
 32 JUMP_ABSOLUTE 20
>> 34 RETURN_VALUE
Copier après la connexion

La fonction optimisée utilise des boucles au lieu de la récursion, améliorant ainsi l'efficacité.

Type étendu : type de données personnalisé

Python permet la création de types de données personnalisés, appelés types d'extension. Cela peut être fait en mettant en œuvre des méthodes spéciales telles que :

class Point:
def __init__(self, x, y):
self.x = x
self.y = y

def __repr__(self):
return f"Point(x={self.x}, y={self.y})"

def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)
Copier après la connexion

Cela crée une méthode appelée Point 的自定义数据类型,具有 xy 坐标以及自定义表示(__repr__ 方法)和加法运算符(__add__).

Modules et packages : organisation du code

Python utilise des modules et des packages pour organiser le code. Un module est un ensemble de fonctions et de variables associées, tandis qu'un package est un ensemble de modules. Nous pouvons importer des modules et des packages en utilisant l'instruction import : 

# 导入模块
import math

# 导入包中的模块
from numpy import random
Copier après la connexion

Compétences avancées en débogage

Les conseils de débogage avancés incluent :

  • Points d'arrêt personnalisés : Vous pouvez définir des points d'arrêt sur des lignes, des fonctions ou des conditions spécifiques.
  • Débogueur interactif : Permet l'inspection interactive des variables et l'exécution de commandes pendant l'exécution du programme.
  • Profilage de code : Analysez le temps d'exécution et l'utilisation de la mémoire du programme.

Conclusion

La maîtrise des sujets et techniques avancés de Python CPython peut améliorer considérablement vos compétences en programmation. En comprenant les optimisations de bytecode, les types étendus, les modules et les packages, ainsi que les techniques de débogage avancées, vous pouvez écrire du code Python plus efficace, plus robuste et plus maintenable.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment utiliser la belle soupe pour analyser HTML? Comment utiliser la belle soupe pour analyser HTML? Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Modules mathématiques en python: statistiques Modules mathématiques en python: statistiques Mar 09, 2025 am 11:40 AM

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI

Sérialisation et désérialisation des objets Python: partie 1 Sérialisation et désérialisation des objets Python: partie 1 Mar 08, 2025 am 09:39 AM

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Quelles sont les bibliothèques Python populaires et leurs utilisations? Quelles sont les bibliothèques Python populaires et leurs utilisations? Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment créer des interfaces de ligne de commande (CLI) avec Python? Comment créer des interfaces de ligne de commande (CLI) avec Python? Mar 10, 2025 pm 06:48 PM

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.

Stracage des pages Web en Python avec une belle soupe: recherche et modification DOM Stracage des pages Web en Python avec une belle soupe: recherche et modification DOM Mar 08, 2025 am 10:36 AM

Ce tutoriel s'appuie sur l'introduction précédente à la belle soupe, en se concentrant sur la manipulation de Dom au-delà de la simple navigation sur les arbres. Nous explorerons des méthodes et techniques de recherche efficaces pour modifier la structure HTML. Une méthode de recherche DOM commune est ex

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

See all articles