


Focus sur Golang et l'intelligence artificielle : explorer les possibilités d'intégration technologique
Titre : Focus sur Golang et l'intelligence artificielle : explorer la possibilité d'intégration technologique
Avec le développement rapide de la technologie de l'intelligence artificielle, de plus en plus de programmeurs commencent à prêter attention à la manière d'intégrer Golang, qui est efficace, simple et hautement basé sur la concurrence. Le langage de programmation est combiné à la technologie de l'intelligence artificielle pour obtenir des applications d'IA plus efficaces. Cet article se concentrera sur l'intégration entre Golang et la technologie d'intelligence artificielle, explorera les points de convergence entre eux et fournira des exemples de code spécifiques.
1. La convergence de Golang et de l'intelligence artificielle
- Performances de concurrence : Golang est célèbre pour ses excellentes performances de concurrence, et dans le domaine de l'intelligence artificielle, de nombreuses tâches nécessitent le traitement de grandes quantités de données et des calculs complexes, d'où les performances de concurrence de Golang. Cela peut grandement améliorer l’efficacité des applications d’IA.
- Gestion des ressources : Golang dispose d'un mécanisme efficace de collecte des déchets et d'une riche bibliothèque standard, qui peuvent aider les développeurs à mieux gérer les ressources, ce qui est très important pour le traitement des modèles d'intelligence artificielle et des données à grande échelle.
- Traitement des données à grande échelle : Golang convient aux scénarios dans lesquels des données à grande échelle sont traitées. Dans le domaine de l'intelligence artificielle, le traitement des données est un élément crucial. La combinaison des deux peut apporter des capacités de traitement des données plus efficaces.
2. Exemples spécifiques d'intégration technologique
Ci-dessous, nous utiliserons plusieurs exemples de code spécifiques pour montrer la possibilité d'intégration entre Golang et la technologie d'intelligence artificielle :
- Utilisez Golang pour écrire un réseau neuronal simple
Vous trouverez ci-dessous un exemple simple de réseau neuronal implémenté à l'aide de Golang :
package main import ( "fmt" "github.com/sudhakar-mns/mygograd/common" "github.com/sudhakar-mns/mygograd/nn" ) func main() { // 创建一个神经网络 n := nn.NewNetwork([]int{2, 2, 1}, "tanh") // 创建训练集 trainingData := []common.TrainingData{ {Input: []float64{0, 0}, Output: []float64{0}}, {Input: []float64{0, 1}, Output: []float64{1}}, {Input: []float64{1, 0}, Output: []float64{1}}, {Input: []float64{1, 1}, Output: []float64{0}}, } // 训练神经网络 n.Train(trainingData, 10000, 0.1) // 测试神经网络 fmt.Println("0 XOR 0 =", n.Predict([]float64{0, 0})) fmt.Println("0 XOR 1 =", n.Predict([]float64{0, 1})) fmt.Println("1 XOR 0 =", n.Predict([]float64{1, 0})) fmt.Println("1 XOR 1 =", n.Predict([]float64{1, 1})) }
- Utiliser Golang pour la reconnaissance d'images
L'exemple de code suivant montre comment utiliser Golang combiné avec la bibliothèque OpenCV pour le traitement et la reconnaissance d'images :
package main import ( "fmt" "gocv.io/x/gocv" ) func main() { // 打开摄像头 webcam, err := gocv.OpenVideoCapture(0) if err != nil { fmt.Println("Error opening video capture device: ", err) return } defer webcam.Close() window := gocv.NewWindow("Face Detect") defer window.Close() img := gocv.NewMat() defer img.Close() classifier := gocv.NewCascadeClassifier() defer classifier.Close() if !classifier.Load("haarcascade_frontalface_default.xml") { fmt.Println("Error reading cascade file: haarcascade_frontalface_default.xml") return } for { if webcam.Read(&img) { if img.Empty() { continue } rects := classifier.DetectMultiScale(img) for _, r := range rects { gocv.Rectangle(&img, r, color, 2) } window.IMShow(img) if window.WaitKey(1) >= 0 { break } } else { break } } }
L'exemple ci-dessus montre comment utiliser Bibliothèques Golang et OpenCV pour la détection des visages en temps réel. Grâce à de tels exemples de code, nous pouvons voir le potentiel et la valeur d'application de Golang dans le domaine de l'intelligence artificielle.
3. Conclusion
En tant que langage de programmation efficace et puissant, la combinaison de Golang et de la technologie d'intelligence artificielle apportera plus de possibilités et de flexibilité au développement d'applications d'IA. Grâce aux exemples de code spécifiques fournis dans cet article, nous pouvons voir comment mieux combiner la technologie de l'intelligence artificielle dans le processus d'utilisation de Golang pour obtenir des applications d'IA plus efficaces et plus puissantes. J'espère que cet article pourra aider davantage de développeurs à trouver davantage de points d'intégration entre Golang et l'intelligence artificielle et à explorer conjointement les possibilités infinies de la technologie.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière

A tout moment, la concentration est une vertu. Auteur | Editeur Tang Yitao | Jing Yu La résurgence de l'intelligence artificielle a donné naissance à une nouvelle vague d'innovation matérielle. L’AIPin le plus populaire a rencontré des critiques négatives sans précédent. Marques Brownlee (MKBHD) l'a qualifié de pire produit qu'il ait jamais examiné ; David Pierce, rédacteur en chef de The Verge, a déclaré qu'il ne recommanderait à personne d'acheter cet appareil. Son concurrent, le RabbitR1, n'est guère mieux. Le plus grand doute à propos de cet appareil d'IA est qu'il ne s'agit évidemment que d'une application, mais Rabbit a construit un matériel de 200 $. De nombreuses personnes voient l’innovation matérielle en matière d’IA comme une opportunité de renverser l’ère des smartphones et de s’y consacrer.

Éditeur | ScienceAI Récemment, Tom M. Mitchell, professeur à l'Université Carnegie Mellon et connu comme le « père de l'apprentissage automatique », a écrit un nouveau livre blanc sur l'IA pour la science, axé sur « Comment l'intelligence artificielle accélère-t-elle le développement scientifique ? Le gouvernement américain aide-t-il à atteindre cet objectif ? ScienceAI a compilé le texte intégral du livre blanc original sans modifier sa signification originale. Le contenu est le suivant. Le domaine de l'intelligence artificielle a fait récemment des progrès significatifs, notamment avec des modèles de langage à grande échelle tels que GPT, Claude et Gemini, soulevant ainsi la possibilité d'un impact très positif de l'intelligence artificielle, peut-être en accélérant considérablement

Editeur | ScienceAI Il y a un an, Llion Jones, le dernier auteur de l'article Transformer de Google, a quitté son entreprise pour créer une entreprise et a cofondé la société d'intelligence artificielle SakanaAI avec l'ancien chercheur de Google, David Ha. SakanaAI prétend créer un nouveau modèle de base basé sur une intelligence inspirée de la nature ! Désormais, SakanaAI a remis sa feuille de réponses. SakanaAI annonce le lancement d'AIScientist, le premier système d'IA au monde pour la recherche scientifique automatisée et la découverte ouverte ! De la conception, l'écriture de code, la réalisation d'expériences et la synthèse des résultats, à la rédaction d'articles entiers et à la réalisation d'examens par les pairs, AIScientist ouvre la voie à la recherche et à l'accélération scientifiques basées sur l'IA.
