Maison Périphériques technologiques IA Comment donner à l'IA beaucoup de connaissances en physique ? Les équipes de l'EIT et de l'Université de Pékin ont proposé le concept « d'importance des règles »

Comment donner à l'IA beaucoup de connaissances en physique ? Les équipes de l'EIT et de l'Université de Pékin ont proposé le concept « d'importance des règles »

Mar 14, 2024 pm 04:49 PM
理论

Comment donner à lIA beaucoup de connaissances en physique ? Les équipes de lEIT et de lUniversité de Pékin ont proposé le concept « dimportance des règles »

Éditeur | ScienceAI

Les modèles d'apprentissage profond ont eu un impact profond dans le domaine de la recherche scientifique en raison de leur capacité à apprendre des relations latentes à partir d'énormes quantités de données. Cependant, les modèles qui reposent uniquement sur des données révèlent progressivement leurs limites, notamment une dépendance excessive aux données, des limites dans les capacités de généralisation et des problèmes de cohérence avec le monde physique réel. Ces problèmes poussent les chercheurs à explorer des modèles plus interprétables et explicables pour combler les lacunes des modèles basés sur les données. Par conséquent, combiner la connaissance du domaine et les méthodes basées sur les données pour créer des modèles dotés de plus grandes capacités d’interprétabilité et de généralisation est devenu une direction importante dans la recherche scientifique actuelle. Ce genre de

Par exemple, le modèle texte-vidéo Sora développé par la société américaine OpenAI est très apprécié pour ses excellentes capacités de génération d'images et est considéré comme une avancée importante dans le domaine de l'intelligence artificielle. Bien qu'il soit capable de générer des images et des vidéos réalistes, Sora a encore quelques difficultés à gérer les lois de la physique, telles que la gravité et la fragmentation des objets. Bien que Sora ait fait des progrès significatifs dans la simulation de scénarios réels, il reste encore des progrès à faire dans la compréhension et la simulation précise des lois physiques. Le développement de la technologie de l’IA nécessite encore des efforts continus pour améliorer l’exhaustivité et la précision des modèles afin de mieux s’adapter aux diverses situations du monde réel.

Une façon potentielle de résoudre ce problème consiste à intégrer les connaissances humaines dans des modèles d’apprentissage profond. En combinant les connaissances et les données antérieures, la capacité de généralisation du modèle peut être améliorée, ce qui donne lieu à un modèle « d'apprentissage automatique éclairé » capable de comprendre les lois physiques. Cette approche devrait améliorer les performances et la précision des modèles, les rendant ainsi plus à même de faire face à des problèmes complexes du monde réel. En intégrant l'expérience et les connaissances d'experts humains dans les algorithmes d'apprentissage automatique, nous pouvons construire des systèmes plus intelligents et plus efficaces, favorisant ainsi le développement et l'application de la technologie de l'intelligence artificielle.

Actuellement, il manque encore une exploration approfondie de la valeur exacte des connaissances dans l’apprentissage profond. Il existe un problème urgent : déterminer quelles connaissances préalables peuvent être efficacement intégrées dans le modèle de « pré-apprentissage ». Dans le même temps, l’intégration aveugle de plusieurs règles peut conduire à l’échec du modèle, ce qui nécessite également une certaine attention. Ces limites posent des défis à l’exploration approfondie de la relation entre données et connaissances.

En réponse à ce problème, l'équipe de recherche de l'Eastern Institute of Technology (EIT) et de l'Université de Pékin a proposé le concept d'« importance des règles » et a développé un cadre capable de calculer avec précision la contribution de chaque règle à la précision des prédictions du modèle. Ce cadre révèle non seulement l'interaction complexe entre les données et les connaissances et fournit des conseils théoriques pour l'intégration des connaissances, mais aide également à équilibrer l'influence des connaissances et des données au cours du processus de formation. De plus, cette méthode peut également être utilisée pour identifier des règles a priori inappropriées, ouvrant ainsi de larges perspectives de recherche et d’application dans des domaines interdisciplinaires.

Cette recherche, intitulée « Prior Knowledge's Impact on Deep Learning », a été publiée le 8 mars 2024 dans la revue interdisciplinaire « Nexus » sous Cell Press. La recherche a retenu l'attention de l'AAAS (Association américaine pour l'avancement de la science) et d'EurekAlert !

Comment donner à lIA beaucoup de connaissances en physique ? Les équipes de lEIT et de lUniversité de Pékin ont proposé le concept « dimportance des règles »

Lorsque vous enseignez des puzzles aux enfants, vous pouvez soit les laisser trouver les réponses par essais et erreurs, soit les guider avec quelques règles et techniques de base. De même, l’intégration de règles et de techniques, telles que les lois de la physique, dans la formation en IA peut les rendre plus réalistes et plus efficaces. Cependant, comment évaluer la valeur de ces règles en intelligence artificielle a toujours été un problème difficile pour les chercheurs.

Compte tenu de la riche diversité des connaissances préalables, l'intégration des connaissances préalables dans les modèles d'apprentissage profond est une tâche d'optimisation multi-objectifs complexe. L’équipe de recherche propose de manière innovante un cadre pour quantifier le rôle de différentes connaissances antérieures dans l’amélioration des modèles d’apprentissage profond. Ils considèrent ce processus comme un jeu plein de coopération et de compétition et définissent l'importance des règles en évaluant leur contribution marginale aux prédictions des modèles. Tout d'abord, toutes les combinaisons de règles possibles (c'est-à-dire les « coalitions ») sont générées, un modèle est construit pour chaque combinaison et l'erreur quadratique moyenne est calculée.

Afin de réduire les coûts de calcul, ils ont adopté un algorithme efficace basé sur la perturbation : entraînez d'abord un réseau neuronal entièrement basé sur des données comme modèle de base, puis ajoutez chaque combinaison de règles une par une pour un entraînement supplémentaire, et enfin évaluez les performances du modèle. sur les données de test. En comparant les performances du modèle dans toutes les coalitions avec et sans règle, la contribution marginale de cette règle peut être calculée, et donc son importance.

Comment donner à lIA beaucoup de connaissances en physique ? Les équipes de lEIT et de lUniversité de Pékin ont proposé le concept « dimportance des règles »

Illustration : Processus de calcul de l'importance des règles (source : article)

À travers des exemples de mécanique des fluides, les chercheurs ont exploré la relation complexe entre les données et les règles. Ils ont constaté que les données et les règles antérieures jouaient des rôles complètement différents dans différentes tâches. Lorsque la distribution des données de test et des données de formation est similaire (c'est-à-dire distribution interne), l'augmentation du volume de données affaiblira l'effet des règles.

Cependant, lorsque la similarité de distribution entre les données de test et les données d'entraînement est faible (c'est-à-dire hors distribution), l'importance des règles globales est soulignée, tandis que l'influence des règles locales est affaiblie. La différence entre ces deux types de règles réside dans le fait que les règles globales (telles que les équations gouvernantes) affectent l'ensemble du domaine, tandis que les règles locales (telles que les conditions aux limites) n'agissent que sur des domaines spécifiques.

Comment donner à lIA beaucoup de connaissances en physique ? Les équipes de lEIT et de lUniversité de Pékin ont proposé le concept « dimportance des règles »

Illustration : La relation entre l'importance des règles et la quantité de données (source : article)

L'équipe de recherche a découvert grâce à des expériences numériques que dans l'intégration des connaissances, il existe trois effets interactifs entre les règles : l'effet de dépendance et la synergie effet et effet de substitution.

L'effet de dépendance signifie que certaines règles doivent s'appuyer sur d'autres règles pour être efficaces ; l'effet de synergie montre que l'effet de plusieurs règles travaillant ensemble dépasse la somme de leurs effets indépendants ; données ou autres règles.

Ces trois effets existent en même temps et sont affectés par la quantité de données. En calculant l’importance des règles, ces effets peuvent être clairement démontrés, fournissant ainsi des indications importantes pour l’intégration des connaissances.

Au niveau de l'application, l'équipe de recherche a tenté de résoudre un problème central du processus d'intégration des connaissances : comment équilibrer le rôle des données et des règles pour améliorer l'efficacité de l'intégration et éliminer les connaissances antérieures inappropriées. Au cours du processus de formation du modèle, l’équipe a proposé une stratégie pour ajuster dynamiquement le poids des règles.

Plus précisément, à mesure que les étapes d'itération de formation augmentent, le poids des règles d'importance positive augmente progressivement, tandis que le poids des règles d'importance négative diminue. Cette stratégie peut ajuster l'attention du modèle sur différentes règles en temps réel en fonction des besoins du processus d'optimisation, permettant ainsi une intégration des connaissances plus efficace et plus précise.

De plus, enseigner les lois de la physique aux modèles d’IA peut les rendre « plus pertinents par rapport au monde réel et ainsi jouer un rôle plus important dans la science et l’ingénierie ». Par conséquent, ce cadre a un large éventail d’applications pratiques en ingénierie, en physique et en chimie. Les chercheurs ont non seulement optimisé le modèle d’apprentissage automatique pour résoudre des équations multivariées, mais ont également identifié avec précision des règles qui améliorent les performances du modèle de prédiction pour l’analyse par chromatographie sur couche mince.

Les résultats expérimentaux montrent qu'en incorporant ces règles efficaces, les performances du modèle sont considérablement améliorées et l'erreur quadratique moyenne sur l'ensemble de données de test est réduite de 0,052 à 0,036 (une réduction de 30,8 %). Cela signifie que le cadre peut transformer les informations empiriques en connaissances structurées, améliorant ainsi considérablement les performances du modèle.

En général, évaluer avec précision la valeur des connaissances permet de créer des modèles d'IA plus réalistes, d'améliorer la sécurité et la fiabilité, et revêt une grande importance pour le développement de l'apprentissage profond.

Comment donner à lIA beaucoup de connaissances en physique ? Les équipes de lEIT et de lUniversité de Pékin ont proposé le concept « dimportance des règles »

Illustration : Identifier des règles efficaces grâce à l'importance des règles (Source : article)

Ensuite, l'équipe de recherche prévoit de développer son cadre en un outil plug-in pouvant être utilisé par les développeurs d'intelligence artificielle. Leur objectif ultime est de développer des modèles capables d'extraire des connaissances et des règles directement à partir des données, puis de s'améliorer, créant ainsi un système en boucle fermée allant de la découverte des connaissances à l'intégration des connaissances, faisant du modèle un véritable scientifique en intelligence artificielle.

Lien papier : https://www.cell.com/nexus/fulltext/S2950-1601(24)00001-9

Lien du rapport AAAS : https://www.eurekalert.org/news-releases/1036117

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Repoussant les limites de la détection de défauts traditionnelle, « Defect Spectrum » permet pour la première fois une détection de défauts industriels d'une ultra haute précision et d'une sémantique riche. Repoussant les limites de la détection de défauts traditionnelle, « Defect Spectrum » permet pour la première fois une détection de défauts industriels d'une ultra haute précision et d'une sémantique riche. Jul 26, 2024 pm 05:38 PM

Dans la fabrication moderne, une détection précise des défauts est non seulement la clé pour garantir la qualité des produits, mais également la clé de l’amélioration de l’efficacité de la production. Cependant, les ensembles de données de détection de défauts existants manquent souvent de précision et de richesse sémantique requises pour les applications pratiques, ce qui rend les modèles incapables d'identifier des catégories ou des emplacements de défauts spécifiques. Afin de résoudre ce problème, une équipe de recherche de premier plan composée de l'Université des sciences et technologies de Hong Kong, Guangzhou et de Simou Technology a développé de manière innovante l'ensemble de données « DefectSpectrum », qui fournit une annotation à grande échelle détaillée et sémantiquement riche des défauts industriels. Comme le montre le tableau 1, par rapport à d'autres ensembles de données industrielles, l'ensemble de données « DefectSpectrum » fournit le plus grand nombre d'annotations de défauts (5 438 échantillons de défauts) et la classification de défauts la plus détaillée (125 catégories de défauts).

Le modèle de dialogue NVIDIA ChatQA a évolué vers la version 2.0, avec la longueur du contexte mentionnée à 128 Ko Le modèle de dialogue NVIDIA ChatQA a évolué vers la version 2.0, avec la longueur du contexte mentionnée à 128 Ko Jul 26, 2024 am 08:40 AM

La communauté ouverte LLM est une époque où une centaine de fleurs fleurissent et s'affrontent. Vous pouvez voir Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 et bien d'autres. excellents interprètes. Cependant, par rapport aux grands modèles propriétaires représentés par le GPT-4-Turbo, les modèles ouverts présentent encore des lacunes importantes dans de nombreux domaines. En plus des modèles généraux, certains modèles ouverts spécialisés dans des domaines clés ont été développés, tels que DeepSeek-Coder-V2 pour la programmation et les mathématiques, et InternVL pour les tâches de langage visuel.

Google AI a remporté la médaille d'argent de l'Olympiade mathématique de l'OMI, le modèle de raisonnement mathématique AlphaProof a été lancé et l'apprentissage par renforcement est de retour. Google AI a remporté la médaille d'argent de l'Olympiade mathématique de l'OMI, le modèle de raisonnement mathématique AlphaProof a été lancé et l'apprentissage par renforcement est de retour. Jul 26, 2024 pm 02:40 PM

Pour l’IA, l’Olympiade mathématique n’est plus un problème. Jeudi, l'intelligence artificielle de Google DeepMind a réalisé un exploit : utiliser l'IA pour résoudre la vraie question de l'Olympiade mathématique internationale de cette année, l'OMI, et elle n'était qu'à un pas de remporter la médaille d'or. Le concours de l'OMI qui vient de se terminer la semaine dernière comportait six questions portant sur l'algèbre, la combinatoire, la géométrie et la théorie des nombres. Le système d'IA hybride proposé par Google a répondu correctement à quatre questions et a marqué 28 points, atteignant le niveau de la médaille d'argent. Plus tôt ce mois-ci, le professeur titulaire de l'UCLA, Terence Tao, venait de promouvoir l'Olympiade mathématique de l'IA (AIMO Progress Award) avec un prix d'un million de dollars. De manière inattendue, le niveau de résolution de problèmes d'IA s'était amélioré à ce niveau avant juillet. Posez les questions simultanément sur l'OMI. La chose la plus difficile à faire correctement est l'OMI, qui a la plus longue histoire, la plus grande échelle et la plus négative.

Le point de vue de la nature : les tests de l'intelligence artificielle en médecine sont dans le chaos. Que faut-il faire ? Le point de vue de la nature : les tests de l'intelligence artificielle en médecine sont dans le chaos. Que faut-il faire ? Aug 22, 2024 pm 04:37 PM

Editeur | ScienceAI Sur la base de données cliniques limitées, des centaines d'algorithmes médicaux ont été approuvés. Les scientifiques se demandent qui devrait tester les outils et comment le faire au mieux. Devin Singh a vu un patient pédiatrique aux urgences subir un arrêt cardiaque alors qu'il attendait un traitement pendant une longue période, ce qui l'a incité à explorer l'application de l'IA pour réduire les temps d'attente. À l’aide des données de triage des salles d’urgence de SickKids, Singh et ses collègues ont construit une série de modèles d’IA pour fournir des diagnostics potentiels et recommander des tests. Une étude a montré que ces modèles peuvent accélérer les visites chez le médecin de 22,3 %, accélérant ainsi le traitement des résultats de près de 3 heures par patient nécessitant un examen médical. Cependant, le succès des algorithmes d’intelligence artificielle dans la recherche ne fait que le vérifier.

Formation avec des millions de données cristallines pour résoudre le problème de la phase cristallographique, la méthode d'apprentissage profond PhAI est publiée dans Science Formation avec des millions de données cristallines pour résoudre le problème de la phase cristallographique, la méthode d'apprentissage profond PhAI est publiée dans Science Aug 08, 2024 pm 09:22 PM

Editeur | KX À ce jour, les détails structurels et la précision déterminés par cristallographie, des métaux simples aux grandes protéines membranaires, sont inégalés par aucune autre méthode. Cependant, le plus grand défi, appelé problème de phase, reste la récupération des informations de phase à partir d'amplitudes déterminées expérimentalement. Des chercheurs de l'Université de Copenhague au Danemark ont ​​développé une méthode d'apprentissage en profondeur appelée PhAI pour résoudre les problèmes de phase cristalline. Un réseau neuronal d'apprentissage en profondeur formé à l'aide de millions de structures cristallines artificielles et de leurs données de diffraction synthétique correspondantes peut générer des cartes précises de densité électronique. L'étude montre que cette méthode de solution structurelle ab initio basée sur l'apprentissage profond peut résoudre le problème de phase avec une résolution de seulement 2 Angströms, ce qui équivaut à seulement 10 à 20 % des données disponibles à la résolution atomique, alors que le calcul ab initio traditionnel

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Identifiez automatiquement les meilleures molécules et réduisez les coûts de synthèse. Le MIT développe un cadre d'algorithme de prise de décision en matière de conception moléculaire. Identifiez automatiquement les meilleures molécules et réduisez les coûts de synthèse. Le MIT développe un cadre d'algorithme de prise de décision en matière de conception moléculaire. Jun 22, 2024 am 06:43 AM

Éditeur | L’utilisation de Ziluo AI pour rationaliser la découverte de médicaments explose. Ciblez des milliards de molécules candidates pour détecter celles qui pourraient posséder les propriétés nécessaires au développement de nouveaux médicaments. Il y a tellement de variables à prendre en compte, depuis le prix des matériaux jusqu’au risque d’erreur, qu’évaluer les coûts de synthèse des meilleures molécules candidates n’est pas une tâche facile, même si les scientifiques utilisent l’IA. Ici, les chercheurs du MIT ont développé SPARROW, un cadre d'algorithme de prise de décision quantitative, pour identifier automatiquement les meilleurs candidats moléculaires, minimisant ainsi les coûts de synthèse tout en maximisant la probabilité que les candidats possèdent les propriétés souhaitées. L’algorithme a également identifié les matériaux et les étapes expérimentales nécessaires à la synthèse de ces molécules. SPARROW prend en compte le coût de synthèse d'un lot de molécules à la fois, puisque plusieurs molécules candidates sont souvent disponibles

Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Jul 17, 2024 pm 06:37 PM

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

See all articles