Intelligence artificielle et Golang : une adéquation parfaite
Intelligence artificielle et Golang : une adéquation parfaite
Ces dernières années, la technologie de l'intelligence artificielle a été largement utilisée dans tous les horizons, et Golang est également privilégié par les développeurs comme langage de programmation rapide et efficace. La combinaison des deux peut non seulement améliorer l’efficacité du développement, mais également apporter de meilleures performances et maintenabilité aux projets d’intelligence artificielle. Cet article présentera la combinaison parfaite de l'intelligence artificielle et de Golang et donnera des exemples de code spécifiques.
1. Pourquoi l'intelligence artificielle et Golang vont parfaitement ensemble
1.1 L'efficacité de Golang
Golang est un langage compilé avec d'excellentes performances et des capacités de traitement simultané efficaces. Cela rend Golang idéal pour traiter des données à grande échelle et des algorithmes complexes, exactement ce qu'exigent les projets d'intelligence artificielle.
1.2 Simplicité et maintenabilité de Golang
La syntaxe de Golang est concise et claire, ce qui la rend facile à apprendre et à utiliser. Dans le même temps, Golang prend en charge le développement modulaire et les fonctionnalités autonomes, ce qui rend le code plus facile à maintenir et à développer. Ceci est très important pour le développement et la gestion de projets d’intelligence artificielle.
1.3 Le riche écosystème de Golang
Golang dispose d'une riche bibliothèque standard et de bibliothèques tierces, couvrant une variété de fonctions et d'outils couramment utilisés. Ces bibliothèques peuvent prendre en charge le développement de l’intelligence artificielle, permettant ainsi aux développeurs de mettre en œuvre plus facilement diverses fonctions et algorithmes.
1.4 Compatibilité de Golang avec les frameworks d'intelligence artificielle tels que TensorFlow et PyTorch
Golang peut être bien intégré aux frameworks d'intelligence artificielle traditionnels (tels que TensorFlow, PyTorch, etc.). Les développeurs peuvent utiliser Golang pour écrire du code qui interagit avec ces frameworks. Obtenez des applications d’intelligence artificielle plus flexibles et plus efficaces.
2. Exemples de code spécifiques
Ensuite, nous donnerons un exemple de code Golang simple pour un projet d'intelligence artificielle, démontrant comment utiliser Golang pour implémenter un réseau neuronal simple et effectuer une reconnaissance de chiffres manuscrits sur l'ensemble de données MNIST.
2.1 Définition du réseau neuronal
package main import ( "fmt" "github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/evaluation" "github.com/sjwhitworth/golearn/knn" "github.com/sjwhitworth/golearn/trees" "math/rand" ) func main() { // Load data rawData, err := base.ParseCSVToInstances("data/mnist_train.csv", false) if err != nil { panic(err) } // Create a new KNN classifier cls := knn.NewKnnClassifier("euclidean", "linear", 2) // Perform a training-test split trainData, testData := base.InstancesTrainTestSplit(rawData, 0.50) cls.Fit(trainData) // Predict the test data predictions := cls.Predict(testData) // Print the evaluation fmt.Println("Accuracy: ", evaluation.GetAccuracy(testData, predictions)) }
2.2 Préparation de l'ensemble de données
Nous avons utilisé l'ensemble de données MNIST, qui est un ensemble de données de reconnaissance de chiffres manuscrits couramment utilisé, contenant 60 000 images d'entraînement et 10 000 images de test. Nous stockons les données d'entraînement et les données de test dans des fichiers data/mnist_train.csv
.
2.3 Formation et tests de réseaux neuronaux
Dans le code, nous avons d'abord chargé l'ensemble de données MNIST, puis créé un classificateur KNN pour la formation. Ensuite, les données de formation et les données de test ont été divisées et le classificateur a été formé à l'aide des données de formation. Enfin, les données de test sont prédites et la précision est affichée.
Avec cet exemple simple, nous montrons comment utiliser Golang pour implémenter un réseau neuronal de base et l'appliquer dans le domaine de l'intelligence artificielle.
3. Conclusion
La combinaison parfaite de l'intelligence artificielle et de Golang offre aux développeurs un environnement de développement plus efficace et plus flexible, permettant aux développeurs de mieux appliquer la technologie de l'intelligence artificielle pour résoudre des problèmes pratiques. J'espère que le contenu de cet article pourra aider les lecteurs à mieux comprendre la combinaison de l'intelligence artificielle et de Golang et inciter davantage de personnes à rejoindre la recherche et les applications dans le domaine de l'intelligence artificielle.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière

A tout moment, la concentration est une vertu. Auteur | Editeur Tang Yitao | Jing Yu La résurgence de l'intelligence artificielle a donné naissance à une nouvelle vague d'innovation matérielle. L’AIPin le plus populaire a rencontré des critiques négatives sans précédent. Marques Brownlee (MKBHD) l'a qualifié de pire produit qu'il ait jamais examiné ; David Pierce, rédacteur en chef de The Verge, a déclaré qu'il ne recommanderait à personne d'acheter cet appareil. Son concurrent, le RabbitR1, n'est guère mieux. Le plus grand doute à propos de cet appareil d'IA est qu'il ne s'agit évidemment que d'une application, mais Rabbit a construit un matériel de 200 $. De nombreuses personnes voient l’innovation matérielle en matière d’IA comme une opportunité de renverser l’ère des smartphones et de s’y consacrer.

Éditeur | ScienceAI Récemment, Tom M. Mitchell, professeur à l'Université Carnegie Mellon et connu comme le « père de l'apprentissage automatique », a écrit un nouveau livre blanc sur l'IA pour la science, axé sur « Comment l'intelligence artificielle accélère-t-elle le développement scientifique ? Le gouvernement américain aide-t-il à atteindre cet objectif ? ScienceAI a compilé le texte intégral du livre blanc original sans modifier sa signification originale. Le contenu est le suivant. Le domaine de l'intelligence artificielle a fait récemment des progrès significatifs, notamment avec des modèles de langage à grande échelle tels que GPT, Claude et Gemini, soulevant ainsi la possibilité d'un impact très positif de l'intelligence artificielle, peut-être en accélérant considérablement

Éditeur | Les condensateurs électrostatiques à peau de radis sont des composants clés de stockage d'énergie dans les systèmes électriques avancés dans les domaines de la défense, de l'aviation, de l'énergie et des transports. La densité énergétique est la valeur de mérite d'un condensateur électrostatique et est principalement déterminée par le choix du matériau diélectrique. La plupart des matériaux diélectriques polymères de qualité industrielle sont des polyoléfines flexibles ou des aromatiques rigides qui offrent soit une densité énergétique élevée, soit une stabilité thermique élevée, mais pas les deux. Ici, une équipe de recherche du Georgia Institute of Technology, de l’Université du Connecticut et de l’Université Tsinghua a utilisé l’intelligence artificielle (IA), la chimie des polymères et l’ingénierie moléculaire pour découvrir l’une des séries Tie des polynorbornènes et des polyimides.
